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Outline 

The talk is organized as follows: 

 

 1) Machine learning applied to low-level vision problems 

•  Depth sensing 
•  Confidence estimation 

•  Recent trends 
 

2) Mapping of computer vision algorithms with HLS tools 

•  Most demanding layers of a CNN (convolutions)   

For 1) a small background on stereo vision and confidence 
estimation is needed 
 
For a more detailed introduction to stereo vision: 
 
http://vision.deis.unibo.it/~smatt/Seminars/StereoVision.pdf 



Most computer vision applications rely on low level features 
extracted from images: 

•  Feature detection and description 
•  Segmentation 
•  ... 

•  Depth 
 

Depth is of paramount importance for several applications: 

•  Autonmous driving  

•  Robot picking 
•  Augmented reality 
•  Face recognition  

•  Gaming 
•  . . . 



NASA Mars rover Google car 

Apple iPhone X DJI drones 

Microsoft Xbox and Kinect 



Provide a depth/disparity map D and, in most cases, 
a conventional 2D (RGB) image 
 
Two main technologies: 
 

•  Active  

•  Structured light (Kinect 1) 

•  ToF - Time of Flight (Kinect 2) 

•  LIDAR (Velodyne) 
 

•  Passive 

•  Stereo vision 

•  Monocular depth* sensors based on ML 

Depth sensors 



Active RGBD sensors: structured light 

•  Kinect 1  
 PrimeSense/Microsoft now Apple (iPhone X?) Accuracy  

Indoor 

Outdoor 

Wearable 

Long range 

RGB 

Cost      $    

Structured 
IR pattern Infers depth by triangulation 

www.flickr.com  





Active RGBD sensors: ToF 

•  Microsoft Kinect 2 

Infers depth by measuring the 
bouncing time of signals (path, 

from emitter to receiver) 

Emitter/Receiver 

Accuracy  

Indoor 

Outdoor 

Wearable 

Long range 

RGB 

Cost      $    



Active depth sensors: LIDAR 

•  LIght Detection And Ranging  

Infers depth by measuring bouncing 
time of a laser signal (path, from 

emitter to receiver) 

Emitter/Receiver 

Accuracy  

Indoor 

Outdoor 

Wearable 

Long range 

RGB 

Mechanical parts 

Light/Laser 

Cost      $$$$$$$   

www.google.com 

www.velodyne.com 

 



Passive RGBD sensors: stereo vision 

Accuracy  

Indoor 

Outdoor 

Wearable* 

Long range 

RGB 

•  Passive stereo (binocular) 

Cost      $    

Triangulation 

Infers depth by finding 
corresponding points in two images 



Passive RGBD sensors: monocular depth* camera 

Accuracy  

Indoor 

Outdoor 

Wearable* 

Long range 

RGB 

•  Monocular camera  

Cost      $    

Depth* is inferred by 
a single image 

* Not a “true” depth: the absolute distance is unknown  



http://visualfunhouse.com/ 



3D sensing 

Pointcloud processing 

2D to 3D 
mapping 



Stereo sensing: problem definition 

•  Given two (or more) synchronised* images of 
  the same area infer the 3D coordinates of  
  each point in the sensed scene 
 

 

 

 

 

•  Images acquired with standard cameras 

Baseline B 



1) Find corresponding points (difficult)     

depth 

Reference Target Disparity map 

2) Triangulate to infer depth (straightforward)     

d
fb

xx
fbZ
TR

⋅
=

−

⋅
=

X = Z ⋅ (x − xc)
f

Y = Z ⋅ (y− yc)
f

xR xT 



 
 

Range field (Horopter) 

Given a stereo rig with baseline b and focal length f, the 
range field of the system is constrained by the disparity 
range [dmin, dmax]. 

mind
fb ⋅

maxd
fb ⋅

Horopter 



 
 

•  Depth measured by a stereo vision system is discretized 
  into parallel planes (one for each disparity value) 
 
•  A better (virtual) discretization can be achieved with 
  subpixel techniques 

mind
fb ⋅

maxd
fb ⋅



Disparity map Confidence map 

Reference Target 

Confidence measure 



Outdoor dataset: KITTI 2012 (and 2015) 

http://www.cvlibs.net/datasets/kitti/ 

Training  : 194 (200)  
Sequences  : 21 images/frame without GT 
Testing  : 195 (200) 

Groundtruth (GT) 



Indoor dataset: Middlebury 2014 

http://vision.middlebury.edu/stereo/eval3/ 

Training  : 15  
Sequences  : Na 
Testing  : 10 

Groundtruth (GT) Groundtruth (GT) 



Stereo algorithms evaluation 

§  The Area Under the ROC Curve (AUC) is the metric to 
 evaluate confidence measures 
 
§  The lower, the better 
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§  Error rate or MSE wrt GT data 

§  Often the error bound is set > 1 (not perfect GT) 
 
§  Testing GT data not available to users 
  

Confidence measures: evaluation 

X. Hu and P. Mordohai, "A Quantitative Evaluation of Confidence Measures for Stereo Vision", PAMI 2012 



 
 

The simplest stereo approach 

W W 

H H 

x 

y 

x x+dmax 

Reference (R) Target (T) 

Reference (R) Target (T) 



 
 

C(x,y,d) 
 

likelihood/confidence 
of each correspondence 

The Disparity Space Image (DSI), aka Cost Volume, is a 3D 
matrix (WxHx(dmax-dmin) 

Each element C(x,y,d) of the DSI represents the cost of the 
correspondence between IR(xR,y) and IT(xR+d,y) according to 
the adopted cost function (e.g. Sum of Absolute Differences) 



 
 

Poor results GT Reference 

dmin dmax d 
Winner d*  

Matching  
cost 



 
 

To reduce ambiguity costs are aggregated over a patch 

Reference (R) Target (T) 

Global (and semi-global*) approaches 

( ) ( )dEdEdE smoothdata +=)(

* subset of the stereo pair 

Minimize an energy term over the whole* stereo pair 

Local approaches 



Fixed window (aka BM) 

•  Simple cost aggregation/mean over a patch 

Reference (R) Target (T) Fixed Window (FW) 

What’s wrong with this method? 

[ADAPTIVE] K. Yoon and I. Kweon. Adaptive support-weight approach for correspondence search, PAMI, 2006 

Background is  
misaligned ! 



S 

Ideal 

State-of-the-art cost aggregation strategies aim at shaping 
the support in order to include only points with the same 
(unknown) disparity 

FW 

S 

FW: decreasing the size of the support helps in reducing the 
border localization problem  
 
However, this choice renders the correspondence problem more 
ambiguous (especially when dealing with uniform regions) 
 
In practice, the choice of the optimal size empirically set 



S. Mattoccia, S. Giardino,A. Gambini, Accurate and efficient cost aggregation strategy for stereo correspondence based on 
approximated joint bilateral filtering, Asian Conference on Computer Vision (ACCV2009) 



 
 

Semi Global Matching (SGM) 

-  Fast 
 
- Accurate near discontinuities and in texture-less regions 

-  Combine/sum of simple disparity optimizatations along 
  multiple scanlines 
 
- High memory footprint (the whole DSI is required) 

[SGM] H. Hirschmüller. Stereo vision in structured environments by consistent semi-global matching, PAMI 2008 
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Custom FPGA-based stereo camera: BM and SGM 

•  Processing at 30+ fps (640x480) 

•  Power consumption: < 2.5 Watt 

•  Self powered via USB cable 

•  Weight: < 80 g with lens and holder 

•  Devices: Xilinx Spartan 6 and Zynq 

www.youtube.com/watch?v=KXFWIvrcAYo 



Matching cost: SAD 

22 37 49 

28 30 37 

12 19 23 

34 45 44 

26 38 45 

17 27 31 

SAD = 64  

|34-22| + |45-37| + |44-49| + |26-28| + |38-30| + |45-37| + |17-12| + |27-19| + |31-23|    



0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 

22 37 49 

28 30 37 

12 19 23 

34 45 44 

26 38 45 

17 27 31 

Matching costs: census 
A more robust matching function is based on the census 
transform and the Hamming distance 

census census 

Hamming 

0 

XOR and popcount 



census + Hamming SAD 



Matching cost with deep-learning: MC-CNN 

MC-CNN 

J. Zbontar, Y. LeCun, “Computing the stereo matching cost with a convolutional neural network”, CVPR 2015 

•  First end-to-end approach to learn a cost function 
  
•  Trained with right and wrong samples (from GT data) 

•  State-of-the-art method 

CNN 

Training phase:  
1 point is 1 sample  



Conv + ReLU 

Conv + ReLU 

Conv + ReLU 

Conv + ReLU 

Conv + norm Conv + norm 

Cosine similarity 

Siamese network with 
shared weights 

MC-CNNFAST 

Matching cost with CNN (MC-CNN) fast 

< 1 sec 



Matching cost with CNN (MC-CNN) accurate 

Conv + ReLU 

Conv + ReLU 

Concatenation 

Conv + ReLU 

Conv + ReLU 

Conv + norm Conv + norm 

FC Layers  + ReLUs 

Siamese network with 
shared weights 

MC-CNNACCRT 

≈ 70 sec 



•  MC-CNN + adaptive aggregation* + SGM = top performance 

•  The whole system is not end-to-end (SGM, cost aggregation) 

•  Most top performing stereo methods now rely on MC-CNN 

* K. Zhang, J. Lu, G. Lafruit, “Cross-based Local Stereo Matching Using Orthogonal  Integral Images”, 
IEEE Trans. Cir. and Sys. for Video Technol, 2009 

MC-CNN + aggregation + SGM  



End-to-end stereo: DispNet 

CNN 

A further step forward consists in learning to compute a 
disparity map from a stereo pair 
 
There isn’t a conventional stereo algorithm here 

N. Mayer, E. Ilg P. Häusser and P. Fischer, D. Cremers and A. Dosovitskiy and T. Brox, ”A Large Dataset to  
Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation”, CVPR 2016  

Training phase:  
1 image is 1 sample  



Currently* there aren’t datasets with thousands images for 
training 

The authors tackled this problem training the deep-network on 
large synthetic datasets and then fine tuned it on KITTI 
 
Nevertheless, the training dataset is a major issue 
 
Good performance but MCC-CNN + adaptive + SGM performs better 
 
Very fast: 0.06 sec on a Titan X 

DispNet: training and fine tuning 



Encoder Decoder 

Contracting part: 
convolutions 

Expanding part: up-convolutions 
concatenated with features from 

the contracting part 

DispNet: architecture 





Confidence prediction and machine-learning 

•  The features are 23 conventional confidence measures  
•  The ensemble is a much more effective than each confidence 
  measure 

•  In [Ensemble] a pool of confidence measures is fed to  
  a random forest trained to obtain a better confidence     

[Ensemble] R. Haeusler, R. Nair, and D. Kondermann, “Ensemble learning for confidence measures in stereo vision”, CVPR 2013  

F ϵ Rn Confidence  
prediction [0,1] 

Random forest 

PKR 
NEM 
PER 
LRC 

. 

. 

. 

. 

. 

. 

. 

. 

Training phase:  
1 point is 1 sample  



•  Ensemble was improved by [GCP] using 8 better features and 
  then by [LEV] using 22 even better features 

•  Same strategy for the three methods (Random Forests) 
•  However, they rely on features extracted from the DSI:  
  it is not always available (e.g., RealSense) 

Intel RealSense 

GCP and LEV confidence measures 

PKR=? 
NEM=? 
PER=? 
LRC=? 

? 
? 
? 
? 

[GCP] Spyropoulos, Komodakis, Mordohai, “Learning to detect ground control points for improving the accuracy of stereo 
matching”, CVPR 2014. 

[LEV] Park and Yoon, “Leveraging stereo matching with learning-based confidence measures”, CVPR 2015 



Random 
forest 

Ensemble 

Random 
forest 

GCP 

Random 
forest 

LEV 

MC-CNN 



O1 confidence measure 

•  Aims at removing previous issue concerned with DSI 
•  5 features at 4 scales from the disparity map 

•  Each feature is computed in constant time (O1) 
•  Same strategy of previous methods (Random-Forest) 
•  Outperforms state-of-the-art [Ensemble, GCP and LEV]  

Random 
forest 

MC-CNN 

O1 

Training phase:  
1 point is 1 sample  

[O1] Poggi and Mattoccia, “Learning a general-purpose confidence measure based on O(1) features and a 
smarter aggregation strategy for semi global matching”, 3DV 2016 



1.  Variance (VAR) 
2.  Median (MED) 

3.  Median deviation (MDD) 
4.  Disparity agreement (DA) 
5.  Disparity scattering (DS) 

•  The features encode the local behaviour of the disparity map 
 



Learning from scratch a confidence measure 

•  End-to-end learning of a confidence measure [CCNN] 

•  As for O1, the network is fed only with a disparity map 

•  The DSI is not required 

[CCNN] Poggi and Mattoccia, “Learning from scratch a confidence measure”, BMVC 2016 

Right Wrong 



CNN CCNN 
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64 64 64 
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3 1 

1 

64 100 100 
1 

1 

1 

1 

Training phase:  
1 point is 1 sample  

≈ 0.1 sec (Titan) 

6 layers 
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Layer 1: conv + ReLU 
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Layer 2: conv + ReLU 
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Layer 3: conv + ReLU 
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Layer 4: conv + ReLU 
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Layer 5: Fully connected 
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Layer 6: Fully connected 



•  At the same conference was proposed a similar strategy 
 [PBCP] based on hand-crafted features from LR and RL maps 

Patch Based Confidence Prediction 

CNN PBCP 

Training phase:  
1 point is 1 sample  

Features 

Features 

?LR 

RL 

[PBCP] Seki and Pollefeys, Patch based confidence prediction for dense disparity map, BMVC 2016 

Simple network: 4 layers,  
max 6 filters/layer 

< 0.5 sec (Titan) 



MC-CNN 

CCNN 

CCNN 

PBCP 

MC-CNN 

PBCP 
LR 

RL 



Evaluation of confidence measure 

•   State-of-the-art confidence measures have been exhaustively 
  evaluated in [CONF] 

•   What is the outcome of this evaluation? 

•  ML-based are more effective wrt conventional ones 

•  Most effective: those not using the DSI* [CCNN,O1,PBCP] 

•  CCNN always outperforms any other method 

•  Training is an additional issue but [CCNN,PBCP and O1] 
generalize quite well to new data 

 
1.  Can we train confidence measures without GT data? 

2.  Can we adapt stereo algorithms to new environments 
without GT data?   

[CONF] Poggi, Tosi, Mattoccia, “Quantitative evaluation of confidence measures in a machine learning world”, ICCV 2017 



Census 

MC-CNN 

SGM 

Training on first 20 Kitti 12 (dataset): testing o K12, K15 and M14 



Generalization 
 
AUCKITTI (training)/ AUCMIDD (testing) 

Impact of training data: 
5, 10, 15, 20, 25 images 



Enforcing local consistency with a CNN 

9 

9 

7 

7 

128 128 128 

5 3 

3 1 

1 

128 384 384 
1 

1 

1 

1 

≈ 0.1 sec (Titan) 

CNN 

PKR PKR+ 

•  Given any (conventional or ML-based) confidence measure, 
  a CNN is trained to improve its accuracy by exploiting  
  local consistency [PLUS] 

•  Always notable improvements in terms of AUC (up to ≈75%)   

[PLUS] Poggi and Mattoccia, “Learning to predict stereo reliability enforcing local consistency of confidence maps”, CVPR 2017 



Conventional ML-based 



•   Top performing confidence measures rely on ML  

•   Datasets are seldom available 
 
•   Self-labelling strategy based on a pool of conventional 

 confidence measures [BMVC17] 
 
•   This method enables to improve state-of-the-art [SELF] 

 without any constraint (i.e., sequences, only ego-motion) 
 

[BMVC17] Tosi, Poggi, Tonioni, Di Stefano, Mattoccia, “Learning confidence measures in the wild”, BMVC 2017 

[SELF] Mostegel, Rumpler, Fraundorfer, Bischof, “Using Self- Contradiction to Learn Confidence Measures in Stereo 
Vision”, CVPR 2016 

Unsupervised training of confidence measures 



Self-supervised [BMVC17] GT 



SGM 

CCNN with GT 

CCNN with [BMVC17] 

CCNN with [SELF] 



Unsupervised adaptation for DispNet  

Encoder Decoder 

(CCNN) 

Loss 

[ADAPT] Tonioni, Poggi, Mattoccia, Di Stefano, “Unsupervised Adaptation for Deep Stereo”, ICCV 2017  



DispNet DispNet and [ADAPT] 

Left Right 



Sensor fusion 
•   Confidence measures can be useful for other purposes 

•   In [FUSION] was proposed a method to combine the depth 
 maps provided by two sensors: 

•  Stereo (SGM algorithm) 
 

•  ToF (Mesa) 

•  Each depth measurements is weighted by its confidence within 
a local disparity optimization framework 

•  The resulting disparity combines the strengths of the two 
sensors 

 

[FUSION] Marin, Zanuttigh, Mattoccia, “Reliable fusion of ToF and stereo depth driven by confidence measures”, ECCV 2016 

Left GT ToF SGM Fusion 



Given N disparity maps: 
 
•  CCNN-like architecture to combine multiple disp. maps 

•  the network selects the most confident disparity 

•  more effective than a comparable RF-based strategy 

Disparity fusion 

M. Poggi, S. Mattoccia, “Deep Stereo Fusion: combining multiple disparity hypotheses with deep-learning”, 3DV 2016 



Unsupervised monocular depth* estimation 

[MONO] Godard, Aodha, Brostow, “Unsupervised Monocular Depth Estimation with Left-Right Consistency”, CVPR 2017 

Encoder Decoder 

Reference (Left) 

Left 

Loss 

Warped Left 

Right 



Left 

GT 

[MONO] 

[MONO] Godard, Aodha, Brostow, “Unsupervised Monocular Depth Estimation with Left-Right Consistency”, CVPR 2017 

Impressive results! (but remember ->)  



Conclusions 

•  Low-level vision problems recently tackled with ML 
 
 
•  Depth sensing and confidence measures: state-of-the-art 

•  Unsupervised training and monocular depth estimation very 
interesting topics for future research 
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