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Abstract

This paper proposes an area-based stereo algorithm suitable to real time applications. The core of the algorithm relies on the uniqueness

constraint and on a matching process that rejects previous matches as soon as more reliable ones are found. The proposed approach is also

compared with bidirectional matching (BM), since the latter is the basic method for detecting unreliable matches in most area-based stereo

algorithms. We describe the algorithm’s matching core, the additional constraints introduced to improve the reliability and the computational

optimizations carried out to achieve a very fast implementation. We provide a large set of experimental results, obtained on a standard set of

images with ground-truth as well as on stereo sequences, and computation time measurements. These data are used to evaluate the proposed

algorithm and compare it with a well-known algorithm based on BM.
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1. Introduction

Dense depth measurements are required in many

applications, such as teleconferencing, robot navigation

and control, exploration and modelling of unstructured

environments, virtual reality. According to a recent

taxonomy (Scharstein and Szeliski, 2002), stereo algorithms

that generate dense depth measurements can be roughly

divided into two classes, namely global and local

algorithms. Global algorithms [1], rely on iterative schemes

that carry out disparity assignments on the basis of the

minimisation of a global cost function. These algorithms

yield accurate and dense disparity measurements but exhibit

a very high computational cost that so far renders them

unsuited to real-time applications. Local algorithms [2–8],

also referred to as area-based algorithms, calculate the

disparity at each pixel on the basis of the photometric

properties of the neighbouring pixels. Compared to global

algorithms, local algorithms yield significantly less accurate

disparity maps but, nowadays, thanks to both research

and technology advances, can run fast enough to be

deployed in many real-time applications. Numerous

examples of real-time dense stereo applications based

on the use of local algorithms can be found at the web

sites [9,10].

As far as local matching algorithms are concerned, and

considering the more common case of a binocular stereo

imaging system, a widely adopted method [2,4–8] aimed at

detecting unreliable matches, such as for example those due

to occlusions or photometric distortions, is the so called

bidirectional matching (BM) [11], also referred to as left–

right consistency constraint or left–right check. The method

can be described as follows. Initially, for each point of the

left image find the best match into the right image. Then,

reverse the role of the two images and for each point of the

right image find the best match into the left image. Finally,

keep only those matches that turn out to be coherent when

matching left-to-right (direct matching phase) and right-to-

left (reverse matching phase). It is worth observing that in

both phases the match associated with each pixel is

established independently of those found at neighbouring

pixels, since the other matching phase will highlight

ambiguous matches. BM has proven to be effective in

detecting and discarding the erroneous matches necessarily

yield by area-based algorithms in presence of occlusions
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[12]. However, this approach is characterised by a significant

computational cost. In fact, it requires two matching phases

(direct and reverse) and, although some authors have

proposed calculation schemes aimed at reducing the impact

of the left–right check on the overall stereo execution time

[6], in most implementations this implies doubling the

computational complexity of the matching process.

We propose a fast local algorithm, referred to as single

matching phase (SMP), which enables real-time dense

stereo applications on a standard Personal Computer. The

algorithm is based on a matching core that detects unreliable

matches during the direct matching phase and therefore does

not require a reverse matching phase.

The paper is organised as follows: Section 2 describes the

matching core of the proposed SMP approach and highlights

the main difference with respect to BM. Section 3 addresses

the issue of improving the reliability of the disparity

measurements provided by the basic SMP core. Section 4

outlines the overall stereo matching algorithm based on the

SMP approach. Section 5 describes the computational

optimisation carried out to minimise the number of

calculations required by the stereo algorithm. Section 6

presents and discusses the experimental results obtained

with our SMP-based algorithm as well as with a well known

BM-based stereo algorithm. Finally, the concluding remarks

are drawn in Section 7.

2. The proposed matching approach

We assume here a binocular stereo pair and images in

standard form, i.e. with corresponding epipolar lines lying

on corresponding image scanlines. Should the latter

assumption not be verified, a suitable transformation,

known as rectification [13,15] can be applied to obtain a

pair of images in standard form from the original ones. In

Section 6 we provide experimental results obtained on

stereo pairs in standard form as well as on rectified stereo

pairs.

Hence, in local algorithms, given a point in the reference

image the homologous point is selected by searching along

the corresponding scanline in the other image, and within a

certain disparity range, for the point that minimise

(maximize) an error (similarity) function, 1; representing

the degree of dissimilarity (similarity) between two small

regions centered at the points under examination. Unlike

algorithms based on BM, which rely on a direct (i.e. left-to-

right) and a reverse (i.e. right-to-left) matching phase, our

algorithm uses only a direct matching phase. Our approach

relies on the uniqueness constraint, which states that a 3D

point can be projected at most in one point of each image of

the stereo pair, as well as on the ability of modifying

disparity measurements dynamically as long as the match-

ing process proceeds.

Let’s assume that the left image is the reference, that

disparity, d; belongs to the interval ½0;…; dmax� and that

the left image is scanned from top to bottom and from left to

right. Moreover, without loss of generality, we assume that

the matching process relies on an error function. The

extension to the case of similarity functions is

straightforward.

Starting from one point of left image, say Lðx 2 dmax; yÞ;

the algorithm searches for the best candidate by evaluating

function 1 within the interval ½Rðx 2 dmax; yÞ;…;Rðx; yÞ�:

Then, for the successive point of reference image

Lðxþ1 2 dmax; yÞ the procedure is repeated searching for

the best match within ½Rðx þ 1 2 dmax; yÞ;…;Rðx þ 1; yÞ�:

The process is then iterated for the successive points along

the scanline. This procedure is outlined in Fig. 1, which

shows for each point of the left image belonging to the

interval ½Lðx 2 dmax; yÞ;…;Lðx; yÞ� the potential matching

points in the right image within the disparity range

½0;…; dmax�: Note also that in the figure the arcs are marked

with the disparity value that brings one point of the left

image into the same point Rðx; yÞ of the right image.

Suppose now that the best match found for Lðx þ b2

dmax; yÞ is Rðx; yÞ; with similarity score 1ðx þ b2 dmax; x; yÞ:

We adopt the notation Lðx þ b2 dmax; yÞQ Rðx; yÞ to

indicate that this match from left to right has been

established.

As it is common in area-based algorithms, we use

photometric properties, encoded by the error function, as the

main cue driving the matching process, even though this cue

may be ambiguous due to many causes such as for example

photometric distortions, occlusions and noise. However,

incorrect matches expose inconsistencies within the set of

matches already established that can be deployed to detect

and discard them.

Thus, let’s suppose that another point of the left image,

say Lðx þ a2 dmax; yÞ; with a # b; has been previously

matched with Rðx; yÞ with score 1ðx þ a2 dmax; x; yÞ: This

situation, that violates the uniqueness constraint, is used in

our approach to detect incorrect matches. In fact, based on

the uniqueness constraint we assume that at least one of

the two matches, i.e. Lðx þ b2 dmax; yÞQ Rðx; yÞ or Lðx þ

a2 dmax; yÞQ Rðx; yÞ; is incorrect and retain the match

having the better score. Thus, if the point currently analyzed

Lðx þ b2 dmax; yÞ has a better score than Lðx þ a2 dmax; yÞ

(i.e. 1ðx þ b2 dmax; x; yÞ # 1ðx þ a2 dmax; x; yÞ) our

Fig. 1. Matching from left to right.
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algorithm will reject the previous match and accept the new

one. This implies that, although the proposed approach

relies on a direct matching phase only, it allows for

recovering from possible previous matching errors.

The capability of our algorithm to recover from previous

errors as long as better matches are found during the search

is also shown in Fig. 2, which plots as a function of d [
½0;…; dmax� all the scores between the point Rðx; yÞ of right

image and the points in the reference image

½Lðx2dmax; yÞ;…;Lðx; yÞ� that are allowed to establish a

correspondence with Rðx; yÞ (see Fig. 3).

Recalling the arcs drawn in Fig. 1, we can notice that

smaller d values correspond to scores computed more

recently while greater d values to scores computed earlier.

Considering again the two matches (1) Lðx þ a2

dmax; yÞQ Rðx; yÞ and (2) Lðx þ b2 dmax; yÞQ Rðx; yÞ; the

algorithm will discard the old one, (1) since the new one, (2)

has a better score with Rðx; yÞ: Moreover, if we find a new

‘collision’ when analysing the successive points of the left

image; (3) Lðx þ g2 dmax; yÞQ Rðx; yÞ; the score of this

new match will be compared with that associated with the

current best match for Rðx; yÞ; so as to retain only one single

match. That is, as in Fig. 2, since 1ðx þ g2 dmax; x; yÞ #

1ðx þ b2 dmax; x; yÞ; Lðx þ b2 dmax; yÞQ Rðx; yÞ will be

discarded and the current match for Rðx; yÞ set to Lðx þ g2

dmax; yÞQ Rðx; yÞ:

Fig. 4 shows a geometric interpretation of the proposed

matching approach: as long as the left-to-right matching

process proceeds, the algorithm disambiguates between all

the matches that imply locating 3D points lying on the same

line of sight originating from a point of the right image.

These sort of matches, referred to as ‘colliding matches’ for

a given point of the right image Rðx; yÞ; can be caused by the

ambiguity of photometric cues as well as by occlusions. In

Fig. 4 the former situation is represented by the incorrect

match between a and x; the latter by the incorrect match

between b and x:

To conclude this section, we highlight one major

difference between the SMP and BM approaches with the

aid of Fig. 5 that, for a given scanline, shows on the x-axis

the x-coordinates of the points of the left image that are

Fig. 2. Scores associated with point Rðx; yÞ:

Fig. 3. Potential matches in the left image for Rðx; yÞ:

Fig. 4. Geometric interpretation.

Fig. 5. The search paths of bidirectional matching.
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allowed to match with point Rðx; yÞ and on the d-axis

the disparity range. The score of the error function, not

shown in the figure, would be represented on the 1-axis. The

light-gray area defines all the potential matches for the

points in the left image within the interval ½Lðx 2

dmax; yÞ;…; Lðx; yÞ� with points of the right image. For

each point in the left image, BM chooses in the direct phase

the best score along a column in the light-gray area (the

matches found when matching left-to-right have been

marked with a circle in Fig. 5). Then, in the reverse

phase, when matching Rðx; yÞ it chooses the best score along

the diagonal path marked with the darker-gray level: a

match is accepted only if the match found along this path

turns out to be one of those found when matching left-to-

right. It is worth noticing that, although during the reverse

phase BM checks all of the potential matches along the path

in darker-gray, the allowed ones for Rðx; yÞ turn out to be

only those that in the direct phase fall in the darker-gray path

(i.e. the circles lying in the darker gray path).

Conversely, when matching left-to-right, SMP chooses

the best match along a column and at the same time checks

if this is also the best match among those already found

falling on the darker-gray path (i.e. left-to-right matches that

collide on Rðx; yÞ). Looking at Fig. 5, the matches cross-

checked by SMP are only those represented by the circles

lying on the darker-gray path. With SMP a point of the right

image, Rðx; yÞ; will be certainly matched if there is at least

one match in the darker-gray path of Fig. 5 associated with

Rðx; yÞ: This is not true for BM: even though the direct phase

finds a match for Rðx; yÞ lying in the darker-gray path, this

may not correspond to the best match found along the

darker-gray path in the reverse matching phase and in such a

case Rðx; yÞ will not be matched.

Hence, the matching constraint embodied into SMP turns

out to be less tight than that of BM and therefore SMP tends

to accept more matches. Yet, this implies also that SMP is

potentially more prone to mismatches. In the next section

we show how to improve the reliability of the matches

provided by the basic SMP matching core described so far.

3. Improving match reliability

The goal of improving the reliability of the disparity

measurements provided by SMP can be accomplished by

introducing additional constraints to the basic matching

core. Since we are interested in a fast algorithm, suited to

real-time stereo applications, a major guideline of this work

has been to introduce new constraints that could also be

implemented very efficiently. To this end, rather than carry

out additional calculations, we try to exploit the information

related to match reliability which is already embodied into

the error scores computed by the matching core.

Let’s consider Fig. 7, that plots the error scores

(1-axis) for each disparity value (d-axis) along the

epipolar line (x-axis) marked in white in Fig. 6. In

regions A, C and E the minima can be localised without

ambiguity. Regions A and E belong to the background (left

side and right side of the foreground object, respectively)

while region C belongs to the foreground object. The

minima in region C are sharper than those in regions A and

E. This occurs because the foreground object is more

textured than the background and thus the higher signal

strength yields higher error scores for non homologous

points. However, the sharpness of the minimum does not

guarantee match reliability since in presence of repetitive

patterns (not the case of the considered example) the global

minimum of the error score might be sharp but close to some

other local minimum. Hence, another important feature of

the global minimum is its distinctiveness compared to the

other local minima.

Differently from regions A, C and E, in regions B and D

the minimum is ambiguous and therefore the matching

process is more prone to mismatches. It can be noticed from

Fig. 7 that in regions B and D the global minimum is

significantly less sharp and also less distinctive. This occurs

because in regions B and D the correlation window covers

areas at different depths. Consider for example the point of

the left image at the center of correlation window I in Fig. 6.

Local support for this point comprises background and

foreground points. Due to the geometry of stereopsis, when

searching along the epipolar line for a similar area in the

right image correlation window I cannot match completely

any correlation window of the right image. In fact, since I is

located across a depth discontinuity, the points within I do

not maintain their spatial relationship when projected into

the right image. Thus, only a portion of correlation window I

(i.e. its background or foreground portion) can match

perfectly a portion of a correlation window in the right

image (i.e. the background or the foreground portion). Fig. 6

shows the case in which the foreground portion of the

correlation window under examination (i.e. I) matches the

foreground portion of correlation window I0 in the right

image, since they correspond to the same 3D regions, while

the background portions of the two windows are very

different since they correspond to different regions of the 3D

scene. It is worth observing that in such situations the error

score computed within the correlation window comprises

two components: one is associated with the similar portions

of the window (a low score) and the other with the different

portions (a high score). Consequently, the overall score for

the minimum turns out to be less sharp and also less

Fig. 6. Map stereo pair.

L. Di Stefano et al. / Image and Vision Computing 22 (2004) 983–1005986



distinctive than those found in textured regions without

depth discontinuities (i.e. A, C and E). Moreover, in region

D the presence of occluded points renders the correspon-

dence problem even more ambiguous. The described effect

yields matching errors and is responsible for the border-

localisation problem [7,16]: objects’ borders are not

localised accurately with respect to their original position

due to the ambiguity of the matching process across depth

discontinuities.

According to the previous analysis, we have devised a

strategy aimed at discarding ambiguous correspondences

and based on estimating the sharpness and distinctiveness of

the global minimum found by SMP’s core.

In our algorithm the global minimum is located very

quickly using a parallel technique [6] that with a few SIMD

instructions (i.e. MMX instructions [17]) yields the score

ð1minÞ and the position within the disparity range ðdminÞ of

the global minimum as well as the scores ð11; 12; 13Þ and

positions ðd1; d2; d3Þ of three candidate minima, referred to

as pseudo-minima. These exhibit small error scores but are

not guaranteed to correspond to local minima. To discard

ambiguous matches we estimate the behaviour of the error

function by means of two tests that are carried out using

only the global minimum and the three pseudo-minima.

When the three pseudo-minima fall far from the position

of the global minimum we consider the match as ambiguous,

unless the error score of the global minimum is much

smaller than those of the pseudo-minima. On the other hand,

when the pseudo-minima are close to the position of the

global minimum, we consider the match as reliable.

The following relationship evaluates the degree of

aggregation of the pseudo-minima in proximity of the

global minimum:

dd ¼
X3

i¼1

ldi 2 dminl ð1Þ

A low dd value (the lowest value is 4) indicates that the

pseudo-minima are localized in proximity of the global

minimum and thus the match is accepted as reliable.

Conversely an high dd value means that the pseudo-minima

are spread within the disparity range and hence the match is

potentially ambiguous. In order to evaluate the reliability of

the matches that do not satisfy the previous constraint we

perform an additional test aimed at evaluating whether the

score of the global minimum is much smaller than those of

the pseudo-minima. The following relation

d1 ¼
X3

i¼1

ð1i 2 1minÞ ð2Þ

embodies information about the distinctiveness of the global

minimum with respect to the three pseudo-minima.

Actually, we consider the ratio d1=1min to evaluate the

distinctiveness of the global minimum, with high ratios

indicating distinctive global minima.

4. The overall stereo algorithm

The overall stereo algorithm consists of the four main

steps shown in Fig. 8.

(A) The input images are normalized by subtraction of the

mean values of the intensities computed in a small

window centered at each pixel [2]. This allows for

compensating potential distortions such as slightly

different settings of the cameras and–or variable

photometric conditions. Moreover, since matching

turns out to be highly unreliable when dealing with

poorly textured areas, the variance of the intensities is

calculated at each pixel considering a window of

Fig. 7. Plot of the error scores along the line marked in white in Fig. 6.
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the same size as that used to obtain the means.

This information is used in step (C) to detect regions

with lack of texture [2].

(B) The normalized images are matched according to the

approach described in Section 2, which is independent

of the matching function. Currently, we use the sum of

absolute differences (SAD) but any other error function,

e.g. the sum of squared differences (SSD), or similarity

function, e.g. the normalized cross-correlation (NCC)

or also non-parametric local transform [19], e.g. the

rank or census transform, could be used.

(C) The reliability of the matches provided by the basic

matching core is improved by means of the tests

described in Section 3. In addition, this step uses the

variance map computed in the pre-processing step to

reject the matches found at points belonging to poorly

textured areas. These points are detected comparing the

values stored in the variance map against a fixed

threshold value. The threshold value depends on the

noise affecting the imaging process and can be chosen

by pointing the stereo system towards a uniform object

(e.g. a wall) and then increasing the value until most

incorrect disparity measurements disappear.

(D) The final step performs sub-pixel refinement of

disparities. Sub-pixel accuracy (up to 1/16 of pixel) is

achieved detecting the minimum of a second degree

curve interpolating the SAD scores in proximity of the

minimum found by the matching core.

5. Computational optimisation

The most expensive task performed by the stereo

algorithm is the computation of SAD scores, which are

needed to carry out the direct matching phase. In this section

we outline the optimisation techniques adopted to avoid

redundant calculations. We show first the basic calculation

scheme, already described in Ref. [6], and then propose an

additional level of incremental calculation aimed at

achieving further speed-up.

Suppose that SADðx; y; dÞ is the SAD score between a

window of size ð2n þ 1Þð2n þ 1Þ centered at coordinates

ðx; yÞ in the left image and the corresponding window

centered at ðx þ d; yÞ in the right image:

SADðx; y; dÞ ¼
Xn

i;j¼2n

lLðx þ j; y þ iÞ2 Rðx þ d þ j; y þ iÞl

ð3Þ

Observing Fig. 9, it is easy to notice that SADðx; y þ 1; dÞ

can be attained from SADðx; y; dÞ :

SADðx; y þ 1; dÞ ¼ SADðx; y; dÞ þ Uðx; y þ 1; dÞ ð4Þ

with Uðx; y þ 1; dÞ representing the difference between the

SADs associated with the lowermost and uppermost rows of

Fig. 8. The four processing steps.

Fig. 9. Incremental calculation scheme.
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the matching window (shown in light-gray in Fig. 9):

Uðx; y þ 1; dÞ

¼
Xn

j¼2n

lLðx þ j; y þ n þ 1Þ2 Rðx þ d þ j; y þ n þ 1Þl

2
Xn

j¼2n

lLðx þ j; y 2 nÞ2 Rðx þ d þ j; y 2 nÞl ð5Þ

Furthermore, Uðx; y þ 1; dÞ can be computed from

Uðx21; y þ 1; dÞ by simply considering the contributes

associated with the four points shown in dark-gray in Fig. 9:

Uðx; y þ 1; dÞ ¼ Uðx 2 1; y þ 1; dÞ þ lLðx þ n; y þ n þ 1Þ

2 Rðx þ d þ n; y þ n þ 1Þl
2 lLðx þ n; y 2 nÞ2 Rðx þ d þ n; y 2 nÞl
2 lLðx 2 n 2 1; y þ n þ 1Þ

2 Rðx þ d 2 n 2 1; y þ n þ 1Þl
þ lLðx 2 n 2 1; y 2 nÞ

2 Rðx þ d 2 n 2 1; y 2 nÞl ð6Þ

This allows for keeping complexity small and independent

of the size of the matching window, since only four

elementary operation are needed to obtain the SAD score at

each new point.

The computational scheme of Eqs. (4) and (6) makes use

of a vertical recursion to obtain the SAD and an horizontal

recursion to obtain the updating term, U: Hence, it requires

storing the SAD scores associated with the previous

row (Wdr values, if W is the width of the image and

dr ¼ dmax þ 1 the disparity range) and the dr values of U

associated with the previous point.

A similar incremental-calculation approach has been

adopted in the stereo algorithms developed at INRIA [2] and

CMU [3]. However, the scheme described in Refs. [2,3],

make use of a vertical recursion to obtain the updating term

and of an horizontal recursion to obtain the similarity

(INRIA) or error (CMU) scores. Hence, in order to sustain

the recursion the INRIA and CMU scheme requires storing

the Wdr values of the updating term associated with the

previous row and the dr values of the similarity-error scores

associated with the previous point.

To implement efficiently our matching algorithm, which

is based on disambiguating between the collisions occurring

while matching left-to-right along a row, when matching a

point of the left image it is necessary to obtain quickly the

SAD scores associated with the previous points along the

row. Hence, the scheme of Eqs. (4) and (6) is particularly

suited to our matching algorithm: since, as the computation

proceeds along a row, the scheme requires storing SAD

scores to sustain the recursion, when matching a point of the

left image the SAD scores of the previous points of the row

are already available and can be accessed to disambiguate a

collision. Note that this would not be the case of the INRIA

and CMU scheme, for which the values stored to sustain

the recursion as the computation proceeds along a row are

those of the updating term.

As shown in Section 4, the pre-processing step requires

computation of the mean and variance of the two images.

Considering for example the left image, and posing

N2 ¼ ð2n þ 1Þð2n þ 1Þ; the mean is given by

mLðx; yÞ ¼
1

N2

Xn

i;j¼2n

Lðx þ j; y þ iÞ ¼
1

N2
S1ðx; yÞ ð7Þ

while the variance can be expressed [20] as

s2
Lðx; yÞ ¼

1

N2

Xn

i;j¼2n

L2ðx þ j; y þ iÞ2 m2
Lðx; yÞ

¼
1

N2
S2ðx; yÞ2 m2

Lðx; yÞ ð8Þ

Since Eqs. (7) and (8) rely on the same basic operation,

namely scanning the image and summing-up intensities—or

squared intensities, it can be easily verified that the

computation of mean and variance can be carried out

using the following schemes:

S1ðx; y þ 1Þ ¼ S1ðx; yÞ þ US1
ðx; y þ 1Þ ð9Þ

US1
ðx; y þ 1Þ ¼

Xn

j¼2n

ðLðx þ j; y þ n þ 1Þ2 Lðx þ j; y 2 nÞÞ

ð10Þ

US1
ðx; y þ 1Þ ¼ US1

ðx 2 1; y þ 1Þ þ Lðx þ n; y þ n þ 1Þ

2 Lðx þ n; y 2 nÞ2 Lðx 2 n 2 1; y þ n þ 1Þ

2 Lðx 2 n 2 1; y 2 nÞ ð11Þ

S2ðx; y þ 1Þ ¼ S2ðx; yÞ þ US2
ðx; y þ 1Þ ð12Þ

US2
ðx;yþ 1Þ ¼

Xn

j¼2n

ðL2ðxþ j; yþ nþ 1Þ2 L2ðxþ j; y2 nÞÞ

ð13Þ

US2
ðx;yþ 1Þ ¼ US2

ðx2 1;yþ 1ÞþL2ðxþ n;yþ nþ 1Þ

2L2ðxþ n;y2 nÞ2L2ðx2 n2 1;yþ nþ 1Þ

2L2ðx2 n2 1;y2 nÞ ð14Þ

In both the matching and pre-processing steps it is possible

to introduce a third level of incremental computation aimed

at achieving additional speed-up. Both steps use the four

pixels at the corners of the correlation window. Formulas

(6), (11) and (14) show that these pixels contribute to two

terms, say A and B; where A includes the two pixels on the

left side of the correlation window and B those on the right

side. Observing that term B plays the role of term A when

the correlation window is shifted horizontally by 2n þ 1

units, we can store, at a very small memory cost, the most

recent 2n þ 1B terms so that they can be re-used 2n þ 1

units later in place of the A terms. Calling T the array of the

B terms, each element can be referenced with the index

~x ¼ x modð2n þ 1Þ and thus all elements are visited each
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time the correlation window is shifted horizontally by 2n þ

1 units. When shifting the window by one unit, a new B term

is calculated while the needed A term is fetched from Tð~xÞ:

After both terms have been used, Tð~xÞ is updated to the

newly calculated B term.

To introduce this third level of incremental computation

into the pre-processing step, formula (11) for the mean

calculation is rewritten as follows:

US1
ðx; y þ 1Þ ¼ US1

ðx 2 1; y þ 1Þ þ Lðx þ n; y þ n þ 1Þ

2 Lðx þ n; y 2 nÞ2 T1ð~xÞ ð15Þ

where

T1ð~xÞ ¼ Lðx 2 n 2 1; y þ n þ 1Þ2 Lðx 2 n 2 1; y 2 nÞ

with ~x ¼ x modð2n þ 1Þ

ð16Þ

Similarly formula (14) for the variance calculation

becomes:

US2
ðx; y þ 1Þ ¼US2

ðx 2 1; y þ 1Þ þ L2ðx þ n; y þ n þ 1Þ

2 L2ðx þ n; y 2 nÞ2 T2ð~xÞ ð17Þ

where

T2ð~xÞ ¼ L2ðx 2 n 2 1; y þ n þ 1Þ2 L2ðx 2 n 2 1; y 2 nÞ

with ~x ¼ x modð2n þ 1Þ ð18Þ

In the matching step the third level of incremental

computation is applied for each disparity value d [
½0; dmax�; thus, the array T grows by one dimension and

formula (6) is rewritten as follows:

Uðx; y þ 1; dÞ ¼ Uðx 2 1; y þ 1; dÞ þ lLðx þ n; y þ n þ 1Þ

2 Rðx þ d þ n; y þ n þ 1Þl
2 lLðx þ n; y 2 nÞ2 Rðx þ d þ n; y 2 nÞl
2 Tð~x; dÞ ð19Þ

Tð~x; dÞ ¼ lLðx 2 n 2 1; y þ n þ 1Þ

2 Rðx þ d 2 n 2 1; y þ n þ 1Þl
2 lLðx 2 n 2 1; y 2 nÞ

2 Rðx þ d 2 n 2 1; y 2 nÞl
with ~x ¼ x modð2n þ 1Þ; d [ ½o; dmax� ð20Þ

The extension of the incremental computation scheme

described above to the case of other matching functions,

such as SSD and NCC, is straightforward.

Finally, the code of the optimised algorithm have been

parallelised deploying the SIMD-style instructions [18]

provided by the target CPU (i.e. Pentium III processor with

MMX [17] and SSE [21] technology).

6. Experimental results

We first discuss and compare the experimental results

obtained with SMP and BM on a standard set of stereo

images with available ground truth (Section 6.1). Then, in

Section 6.2, we discuss the experimental results obtained

with SMP on a sequences taken in our laboratory and

concerned with a 3D People Tracking application currently

under investigation.

6.1. Experimental results on standard stereo pairs

We discuss here the experimental results obtained on the

grayscale stereo pairs available at the Scharstein and

Szeliski’s web site [22] using the SMP-based algorithm

described in Section 4 and a well known BM-based stereo

algorithm. We first discuss the results qualitatively, so as to

address a number of issues concerning the disparity maps

yield by local matching algorithms. Then, we introduce a

performance evaluation metric in order to compare the two

approaches also in quantitative terms. Finally, we report

several measurements aimed at assessing the speed of the

two approaches with different image sizes and disparity

ranges.

Scharstein and Szeliski’s data set [22] consists of the

Tsukuba, Map, Sawtooth, Venus, Barn 1, Barn 2, Bull

and Poster stereo pairs and ground-truth disparity maps

(Figs. 10–17). For the first four pairs, i.e. Tsukuba, Map,

Sawtooth and Venus, the occlusion map is also available.

As a representative of BM-based algorithms we consider

the well-known SVS algorithm (ver. 2.0) from SRI

International [4]. It is worth pointing out that, besides the

matching core, further differences between our algorithm

and SVS can be found in the pre-processing step as well as

in the technique adopted to detect low textured areas. As for

the pre-processing step, our algorithm normalises the

images by subtraction of the mean value while SVS relies

on LoG filtering [4]. We detect low textured areas by

analysing the variance map while SVS makes use of an

interest operator. However, since we are mostly interested

in evaluating and comparing the SMP and BM matching

cores, we carried out the experiments by turning off

the detection of low-textured areas for both algorithms.

Moreover, for both algorithms we used the same parameters

and correlation window (9 £ 9) for all the stereo pairs

within the data set.

The Tsukuba stereo pair contains complex objects at

different depths generating several occlusions, as well as

poorly-textured regions in the background, such as for

example the wall at the top-right corner. Moreover, this

stereo pair contains some specular regions (i.e. the face of

the statue and some regions of the lamp) that render quite

difficult the stereo matching process. Comparing the

output given by SMP (left image of Fig. 18) with the

ground truth (right image of Fig. 10) we can observe first

that the rough 3D structure has been clearly recovered: the

camera an its trestle on the background have been

recovered as well as the objects closer to the stereo

acquisition system, such as the statue and the lamp’s head.

Moreover, it is worth observing that several major

L. Di Stefano et al. / Image and Vision Computing 22 (2004) 983–1005990



Fig. 10. Left image of the Tsukuba stereo pair (left) and ground truth (right).

Fig. 11. Left image of the Map stereo pair (left) and ground truth (right).

Fig. 12. Left image of the Sawtooth stereo pair (left) and ground truth (right).
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occlusions have been discarded (the points left unmatched

are represented in white), showing the ability SMP to deal

with this problem. However, details such as the lamp’s

wire, the lamp’s switch and the two roads that sustain the

lamp, have vanished. Moreover the disparity map is

affected by the border-localisation problem, as it can be

seen comparing the ground truth with the disparity map

computed by the algorithm. This causes clearly an

unaccurate fitting of the object’s silhouette into the

disparity map.

This problem is inherent to local algorithms since, as

discussed in Section 3, it depends on the method adopted to

establish correspondences, which relies on the use of a local

support area centered at the point under examination (i.e. the

correlation window). Local algorithms behave correctly

when the correlation window covers a region at constant

depth but are likely to produce artifacts when the correlation

window covers regions at different depths. The vanishing of

details in the disparity map arises when the details are small

compared to the size of the correlation window. In this case

the signal strength embodied in the texture of the detail can

be overcame by the contributions of the other points within

the correlation window, resulting in a low-pass filtering

effect. Both problems can be mitigated reducing the size of

the correlation window; however, this solution has the side-

effect of reducing the signal-to-noise ratio leading to more

matching errors. Some authors [7,14,16] propose local

algorithms aimed at reducing the border-localisation

problem. However, the results provided by these algorithms

are still less accurate that those generated with global, slow

algorithms such as the one presented by Kolmogorov and

Zabih [1].

The results obtained by the BM-based algorithm on the

Tsukuba stereo pair (right of Fig. 18) are very similar:

Fig. 13. Left image of the Venus stereo pair (left) and ground truth (right).

Fig. 14. Left image of the Barn 1 stereo pair (left) and ground truth (right).
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Fig. 15. Left image of the Barn 2 stereo pair (left) and ground truth (right).

Fig. 16. Left image of the Bull stereo pair (left) and ground truth (right).

Fig. 17. Left image of the Poster stereo pair (left) and ground truth (right).
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the rough 3D structure is recovered, several major

occlusions have been discarded, the border are localised

with poor accuracy and many small details have been lost.

The other stereo pairs Map, Sawtooth, Venus, Barn 1,

Barn 2, Bull and Poster present a similar geometrical

structure made out of simpler, piecewise planar objects

(typically posters or paintings) located at different depths

and generating large occlusions. However, compared to

Tsukuba, these stereo pairs contain very few small details.

Moreover, with the exception of Map, the other stereo pairs

contain several low textured regions.

The disparity maps obtained with SMP and BM are

shown in Figs. 19–25. These results show that the

algorithms recover very similarly, and quite correctly, the

3D structure of the scene. At depth discontinuities the maps

are still affected by the border localisation problem and

many of the occluded points are detected and discarded.

Moreover, due to the nature of the images, the problem of

the vanishing of small details has much less impact on the

quality of the results compared to Tsukuba.

In order to provide a quantitative assessment of SMP and

BM we need to use a performance evaluation metric. Since

both approaches mark as void the disparities yield by

matches judged unreliable, we cannot use exactly the same

metric defined in Ref. [23] since it requires disparities to be

defined at each pixel. Though the disparities at unmatched

points could have been obtained by interpolation, this would

have distorted the results provided by the two matching

approaches that we are interested in evaluating. Hence, we

define a metric aimed at assessing the performance on the

basis of the incomplete disparity maps generated by SMP

and BM.

To describe the adopted metric we use a notation where

the subscript, called A; identifies the matching approach, i.e.

A [ {SMP;BM}: We call, respectively, MA and UA the set

of points matched and left unmatched by each algorithm

within a common region-of-interest (ROI). NA represents

the number of points belonging to set MA: We define the

RMSA (root mean squared) error between the computed

disparity map (dA) and the ground truth (dT ) as follows:

RMSA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NA

X
ðx;yÞ[MA

ldAðx; yÞ2 dT ðx; yÞl
2

vuut ð21Þ

Fig. 18. Disparity map obtained on the Tsukuba stereo pair with SMP (left) and BM (right).

Fig. 19. Disparity map obtained on the Map stereo pair with SMP (left) and BM (right).
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Fig. 20. Disparity map obtained on the Sawtooth stereo pair with SMP (left) and BM (right).

Fig. 21. Disparity map obtained on the Venus stereo pair with SMP (left) and BM (right).

Fig. 22. Disparity map obtained on the Barn 1 stereo pair with SMP (left) and BM (right).
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Fig. 23. Disparity map obtained on the Barn 2 stereo pair with SMP (left) and BM (right).

Fig. 25. Disparity map obtained on the Poster stereo pair with SMP (Left) and BM (Right).

Fig. 24. Disparity map obtained on the Bull stereo pair with SMP (left) and BM (right).
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We also evaluate the number of incorrect disparity

measurements provided by each algorithm. Similarly to

Ref. [23], we consider as incorrect measurements those

points ðx; yÞ that have been matched by the algorithm and

yield ldAðx; yÞ2 dT ðx; yÞl . 1: We call BA the ratio of

incorrect measurements to the number of matched points:

BA ¼
1

NA

X
ðx;yÞ[MA

dA

0
@

1
A ð22Þ

where dA ¼ 1 if ldAðx; yÞ2 dT ðx; yÞl . 1:0 and dA ¼ 0

otherwise.

As already mentioned, since the two algorithms do not

provide necessarily complete disparity measurements

within the common ROI, in Eqs. (21) and (22) we consider

only those points for which each of the two algorithms

provide a disparity measurement (i.e. for SMP we consider

the set MSMP and for BM the set MBM).

The capability to deal with occlusions is evaluated using

the occlusion maps available Scharstein and Szeliski’s web

site [22]. For both algorithms we have computed the number

of points correctly marked as occluded (detected occlu-

sions), ORA
; and the number of points belonging to occluded

regions that, incorrectly, are returned as matched (unde-

tected occlusions), OWA
:

Table 1 reports the results collected running the two

algorithms on the eight stereo pairs. We can notice that the

number of points matched by the two algorithms is

substantially the same for all the stereo pairs. As for the

incorrect measurements, with the exception of Sawtooth on

which SMP performs better, BM always provides a lower

number incorrect disparity measurements. However,

the number of incorrect measurements yield by SMP and

BM turns out to be very similar throughout the dataset, with

the only exception of Tsukuba on which BM performs better

by approximately 5%. The RMS error, that provides an

overall measure of the performance, turns out to be very

similar within the whole data set, though BM yields always

slightly smaller errors with the exception of the Sawtooth

stereo pair. It is worth observing that due to the presence of

more complex objects and small details, with Tsukuba both

algorithms yield less satisfactory results in terms of

incorrect measurements as well as RMS error.

Figs. 26–33, show visually the points where incorrect

measurements are produced by the SMP and BM. To

localise the errors we use in these figures the ground truth as

background and highlight in white the points where occur

incorrect measurements.

Table 2 shows the statistics aimed at assessing the

capability of the two algorithms to deal with occluded

points. It is worth noticing that with the Map stereo pair the

two algorithms perform similarly, and pretty well, with a

slightly better detection percentage yield by BM. Con-

versely, with the other three stereo pairs both approaches

turns out to be less effective in detecting correctly occluded

points, although SMP performs better than BM on the Venus

and Sawtooth pairs. Figs. 34–37 have been obtained by

Table 1

Percentage of matched points ðNAÞ; percentage of incorrect measurements

ðBAÞ; percentage of unmatched points (UA) and root mean squared error

ðRMSAÞ for SMP and BM

Image NA (%) BA (%) UA (%) RMSA

Tsukuba (SMP) 90.68 33.77 9.32 5.77

Tsukuba (BM) 89.00 28.23 11.00 5.73

Map (SMP) 92.20 2.78 7.80 3.31

Map (BM) 91.49 2.04 8.51 2.89

Sawtooth (SMP) 99.29 3.67 0.71 0.76

Sawtooth (BM) 99.38 4.43 0.62 0.77

Venus (SMP) 97.98 4.28 2.02 0.97

Venus (BM) 98.87 3.10 1.13 0.65

Barn 1 (SMP) 98.86 2.88 1.14 0.60

Barn 1 (BM) 99.08 2.72 0.92 0.55

Barn 2 (SMP) 98.64 3.79 1.36 0.71

Barn 2 (BM) 98.91 3.31 1.09 0.62

Bull (SMP) 99.42 1.47 0.58 0.59

Bull (BM) 99.61 1.28 0.39 0.44

Poster (SMP) 98.16 3.52 1.84 0.87

Poster (BM) 98.40 2.62 1.60 0.73

Fig. 26. Incorrect measurements yield by SMP (left) and BM (right) on the Tsukuba stereo pair.
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comparing the disparity maps yield by the two algorithms

with the occlusion maps available at Scharstein and

Szeliski’s web site [22]: non-occluded points are shown in

black, detected occlusions in white and undetected occlu-

sion in gray.

Finally, we report in Table 3 some measurements aimed

at assessing the speed of the two algorithms with different

image sizes and disparity ranges. These measurements have

been obtained on an Intel Pentium III processor running at

800 MHz. Both algorithms are carefully optimised and

deploy the SIMD parallel processing capabilities available

on this CPU. From Table 3 we can see that for a small

disparity range (i.e. 16) BM is always faster, much faster for

small images (i.e. (320 £ 240)) and slightly faster for bigger

images. Yet, as the disparity range is increased, our

algorithm gets faster than BM, significantly faster for big

images and large disparity range. For example, with

800 £ 600 stereo pairs and a disparity range of 16 our

algorithm runs at 5.56 fps while SVS at 6.96. With this

image size and a disparity range of 80 our algorithm is

nearly twice faster than BM (i.e. 2.89 fps for SMP and 1.51

for BM).

6.2. Experimental results on stereo sequences

In this subsection we discuss qualitatively the exper-

imental results obtained with SMP on a stereo sequence

taken in our laboratory and referred to as Outdoor. We are

currently using this sequence within a research activity

aimed at developing a 3D People Tracking application. The

tracking approach is based on first merging the disparity

maps extracted by SMP with the information provided by a

grayscale change-detection algorithm and then building

Fig. 27. Incorrect measurements yield by SMP (left) and BM (right) on the Map stereo pair.

Fig. 28. Incorrect measurements yield by SMP (left) and BM (right) on the Sawtooth stereo pair.

L. Di Stefano et al. / Image and Vision Computing 22 (2004) 983–1005998



Fig. 29. Incorrect measurements yield by SMP (left) and BM (right) on the Venus stereo pair.

Fig. 30. Incorrect measurements yield by SMP (left) and BM (right) on the Barn1 stereo pair.

Fig. 31. Incorrect measurements yield by SMP (left) and BM (right) on the Barn2 stereo pair.
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a suitable plane-view representation that enables us to track

moving objects in the 3D space.

The sequence was acquired with a monocrome MEGA-D

digital stereo head [10] equipped with a pair of 4.8 mm

lenses. The original stereo pairs were rectified using the

method described in Ref. [13] and based on the intrinsic and

extrinsic camera parameters estimated with the functions

provided by the MATLAB Camera Calibration Toolbox

available at [24]. Image size is 640 £ 480 and the rectified

sequence was processed using a 15 £ 15 correlation

window, a disparity search range of 64 pixels and a subpixel

accuracy of 1/8. All the material concerned with this

experiment (the original sequence, the rectified sequence,

the calibration images, the estimated camera parameters, the

disparity-map sequence yield by SMP) is available at

the web site [25]. This site contains also the results relative

to an Indoor sequence taken in our laboratory, not discussed

here for the sake of brevity.

In the Outdoor sequence the stereo head was mounted at

an height of about 2 m from the ground and tilted down so as

to look at the entrance of a building, as shown in the

uppermost images of Fig. 38 (corresponding to Frame 0030

Fig. 32. Incorrect measurements yield by SMP (left) and BM (right) on the Bull stereo pair.

Table 2

Total number of occluded points ðOÞ; percentage of detected occlusions

ðORA
Þ and percentage of undetected occlusions ðOWA

Þ for SMP and BM

Image O ORA
(%) OWA

(%)

Tsukuba (SMP) 2153 9.15 90.85

Tsukuba (BM) 2153 11.75 88.25

Map (SMP) 3086 78.48 21.52

Map (BM) 3086 84.09 15.91

Sawtooth (SMP) 2683 21.77 78.23

Sawtooth (BM) 2683 13.01 86.99

Venus (SMP) 1690 16.51 83.49

Venus (BM) 1690 3.78 96.21

Fig. 33. Incorrect measurements yield by SMP (left) and BM (right) on the Poster stereo pair.
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Fig. 34. Occlusions by SMP (left) and BM (right) on the Tsukuba stereo pair.

Fig. 36. Occlusions by SMP (left) and BM (right) on the Sawtooth stereo pair.

Fig. 35. Occlusions by SMP (left) and BM (right) on the Map stereo pair.
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of the stereo sequence). The initial frames of the sequence

show the static scene, consisting of a background wall with

a long low-textured banister, a staircase with a dozen of

steps and a uniform panel sustained by a box; then, two

persons enter the scene. The uppermost images of Fig. 39

show frame 0050, with one person in the field of view of the

stereo cameras. The lowermost images of Figs. 38 and 39

show the rectified stereo pairs corresponding to the upper-

most images. For the two frames of Figs. 38 and 39 we show

in Figs. 40 and 41 the disparity maps obtained by the SMP

algorithm with four different settings of the threshold that

controls the detection of low textured areas.

The top left disparity map of Fig. 40 show that the 3D

structure of the scene is correctly recovered in most points.

The wall, the banister, the steps at different height and

distance, the uniform panel and its support can be clearly

noticed. Though the disparity map was obtained disabling

the detection of low textured areas (i.e. setting the threshold

to 0), the other constraints embodied into SMP allow for

classifying as unreliable many disparity measurements

occurring in uniform regions, such as the center of the

uniform panel, the wall and the banister. Yet, SMP matches

incorrectly a few points at the top right border of the

uniform panel, as well as some points within the panel. The

other three disparity maps of Fig. 40 show that increasing

the threshold that controls the detection of low textured

areas allows for discarding most of the incorrect matches,

but this implies also loosing an increasing amount of correct

disparity measurements (e.g. those occurring at the

banister).

By observing the disparity maps associated with frame

0050 (Fig. 41) we can notice that most occlusions (i.e. the

right sides of the head and of torso of the person) are

correctly detected by SMP. Again, even though the

detection of low textured areas is disabled, SMP can label

as unreliable several points belonging to the uniform regions

corresponding to the person’s shoulders and pants. Similarly

to the previous frame, increasing the threshold allows for

discarding most incorrect measurements but significantly

reduces the amount of points correctly matched by the

algorithm (e.g. the points on the person’s shoulders and

pants).

The results obtained so far in several outdoor as well as

indoor sequences have proven to be adequate for the

requirements of 3D People Tracking application currently

under development in our laboratory. Though SMP does not

deal with the border localisation problem and change

detection is sensitive to shadows, the merging of the

disparity and grayscale change maps alleviates significantly

both problems since the silhouettes of the moving persons

are reproduced quite accurately by the change detection

algorithm and most shadows can be filtered out based on

disparity information. As for the low-textured regions, in a

people tracking application most of these regions generally

belong to the static background, which is removed by the

change-detection step. Hence, with SMP we can generally

set a very low threshold for the texture operator so as to

recover correctly most of the 3D information associated

with moving persons.

Fig. 37. Occlusions by SMP (left) and BM (right) on the Venus stereo pair.

Table 3

Speed measurements (in terms of frame per second, fps) for the SMP-based

and the BM-based algorithms

Algorithm

(size)

d ¼ 16

(fps)

d ¼ 32

(fps)

d ¼ 48

(fps)

d ¼ 64

(fps)

d ¼ 80

(fps)

SMP (320 £ 240) 39.59 31.25 27.44 25.94 25.96

BM (320 £ 240) 57.99 33.68 20.49 15.31 12.71

SMP (640 £ 480) 8.94 6.92 5.77 5.17 4.78

BM (640 £ 480) 11.99 5.93 4.07 3.18 2.54

SMP (800 £ 600) 5.56 4.28 3.60 3.18 2.89

BM (800 £ 600) 6.96 3.65 2.53 1.94 1.51

SMP (1024 £ 768) 3.32 2.56 2.09 1.86 1.67

BM (1024 £ 768) 3.79 2.07 1.45 1.06 0.78
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Fig. 38. Frame 0030 of the Outdoor stereo sequence: (top left) original left image, (top right) original right image, (bottom left) rectified left image, (bottom

right) rectified right image.

Fig. 39. Frame 0050 of the Outdoor stereo sequence: (top left) original left image (top right) original right image (bottom left) rectified left image (bottom right)

rectified right image.

L. Di Stefano et al. / Image and Vision Computing 22 (2004) 983–1005 1003



Fig. 40. Results on frame 0030 of the Outdoor sequence: (top left) disparity map with threshold set to 0, (top right) Disparity map with threshold set to 1,

(bottom left) disparity map with threshold set to 2, (bottom right) disparity map with threshold set to 3. The four disparity maps have been equalized for better

visualization.

Fig. 41. Results on frame 0050 of the Outdoor sequence: (top left) disparity map with threshold set to 0, (top right) disparity map with threshold set to 1,

(bottom left) disparity map with threshold set to 2, (bottom right) disparity map with threshold set to 3. The four disparity maps have been equalized for better

visualization.
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7. Conclusion

We have presented an area-based stereo matching

algorithm aimed at real time applications that relies only

on a SMP and detects unreliable matches via ‘colliding

matches’, i.e. matches that violate the uniqueness constraint.

We have analysed the differences between the proposed

SMP approach and BM, i.e. left-to-right matching followed

by right-to-left matching, being the latter the method

adopted to detect unreliable matches in most area-based

stereo algorithms conceived for real time applications. We

have shown how to improve the reliability of the matches

yield by SMP at a very small computational cost by

enforcing simple constraints on the behaviour of the error

scores. We have also described an efficient computational

scheme that deploys three levels of incremental calculations

to avoid unnecessary calculations. We have reported and

discussed, both in qualitative and quantitative terms, the

experimental results obtained by the proposed algorithm

and a well-known BM-based algorithm on a standard stereo

data set with ground-truth disparity and occlusion maps. Our

results show that in most cases SMP and BM behave quite

similarly and that SMP holds the potential for speeding-up

significantly dense stereo matching. Eventually, the exper-

imental results obtained on an outdoor rectified stereo

sequence indicate that SMP is potentially effective in

practical applications such as 3D People Tracking.

Hence, SMP can be considered a viable alternative to

BM, in particular with big images and large disparity

ranges, as it is the case of many current stereo applications.

However, our analysis and results confirm the need for

further research aimed at dealing with the typical problems

of area-based stereo algorithms. In particular, we plan to

embody specific techniques to cope with the border-

localisation problem into an SMP based framework.
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