

MARCH 25—29, 2019 FLORENCE, ITALY FIRENZE FIERA

DESIGN, AUTOMATION AND TEST IN EUROPE THE EUROPEAN EVENT FOR
ELECTRONIC SYSTEM DESIGN & TEST

Energy-Efficient Monocular Depth Estimation on ARM-based Embedded Platforms

Valentino Peluso, Antonio Cipolletta, Andrea Calimera, Matteo Poggi, Fabio Tosi and Stefano Mattoccia

Monocular depth estimation is an appealing technique to estimate dense depth maps leveraging unconstrained imaging sensors. State-of-the-art technique [1] deploys energy-hungry deep networks.

EQ-Scalable PyD-Net

NOW...

Architecture

BEFORE

Whereas state-of-the-art models [1] count millions of parameters, have large memory footprints and are far from real-time computation on low powered devices, PyD-Net [2] is compact (1.9M vs more than 30M params) and runs at around 1 FPS on Raspberry Pi 3 with comparable accuracy.

Moreover, PyDNet is an energy-scalable architecture with better performance than more complex models like [1].

F: Full resolution
Q: Quarter resolution

H: Half resolution

E: Eighth resolution

front-end back-end Q.Neural-Kernels Trained | Neural.Net Quantizer a Training Emulator Compiler Data-Set TensorFlow Computing Library **PvTorch** GPGPU by ARM **PyTorch** FP32 INT16 INT8 Speed [FPS]

A <u>sensing technology</u> [3] with such ability to implement accuracy-energy scaling represents a practical option for adaptive embedded systems: contexts or applications which tolerate lower accuracy might pursue higher energy efficiency by tuning resolution and precision.

Energy-Quality Scaling

- <u>Coarse-Gain Knob:</u> PyD-Net infers disparity maps at different resolutions. Its reconfigurable architecture enables to scale energy with output resolution.

- <u>Fine-Grain Knob:</u> in-house neural kernels enables to scale energy with precision. The optimization flow sketched on the left guarantees marginal loss in output quality at lower bit-widths.

FP32 INT16 INT8

Energy Efficiency [J / Frame]

8.0

7.5

7.5

6.5

6.0

5.5

1 2 3 4 5 6 7

- [2] Poggi et al., "Towards real-time unsupervised monocular depth estimation on CPU", IROS 2018
- [3] Peluso et al., "Energy-Efficient Monocular Depth Estimation on ARM-based Embedded Platforms", DATE 2019

^[1] Godard et al., "Unsupervised Monocular Depth Estimation with Left-Right Consistency", CVPR 2017