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Abstract. Gharavi-Alkhansari [1] proposed a full-search equivalent al-
gorithm for speeding-up template matching based on Lp-norm distance
measures. This algorithm performs a pruning of mismatching candidates
based on multilevel pruning conditions and it has been shown that, un-
der certain assumptions on the distortion between the image and the
template, it is faster than the other full-search equivalent algorithms
proposed so far, including algorithms based on the Fast Fourier Trans-
form. In this paper we propose an original contribution with respect to
Gharavi-Alkhansari’s work that is based on the exploitation of an initial
estimation of the global minimum aimed at increasing the efficiency of
the pruning process.

1 Introduction

Template matching aims at locating a given template into an image. To perform
this operation the Full-search (FS) algorithm compares the template with all
the template-sized portions of the image which can be determined out of it.
Hence, a search area can be defined in the image where the subimage candidates
are selected and compared, one by one, to the template. In order to perform
the comparison and select the most similar candidate, a function measuring the
degree of similarity - or distortion - between template and subimage candidate
is computed. A popular class of distortion functions is defined from the distance
based on the Lp norm:

δp(X, Yj) = ||X − Yj ||p =
( N∑

i=1

∣∣xi − yj,i

∣∣p) 1
p (1)

with X being the template and Yj the generic subimage candidate, both seen
as vectors of cardinality N , and with || · ||p denoting the Lp norm, p ≥ 1. With
p = 1 we get the Sum of Absolute Differences (SAD) function, while by taking
p = 2 and squaring (1) we get the Sum of Squared Distances (SSD) function.

The method proposed in [1] is a very fast FS-equivalent algorithm, yielding
notable computational savings also compared to FFT-based algorithms. This
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method, referred to as Low Resolution Pruning (LRP), applies several sufficient
conditions for pruning mismatching candidates in order to carry out only a
fraction of the computations needed by the full search approach.

By analysing the LRP algorithm we devised some modifications aimed at
improving the overall performance of the approach. In particular, we devised
three different full-search equivalent algorithms, conceptually based on the same
idea but deploying different strategies of application. The common point of the
three algorithms is to perform a fast initial estimation of the global minimum
and consequently trying to exploit this knowledge so as to speed-up the matching
process.

2 LRP method

As in [1], we will refer to the template vector as X = {x1, · · · , xN}, of cardi-
nality N , and to the K candidate vectors against whom X must be matched as
Y1, · · · , YK . Each vector will have the same cardinality as the template vector,
i.e. Yj = {yj,1, · · · , yj,N}. In [1], a transformation is introduced, represented by a
N ×N ′ matrix, A, which replaces those elements of a vector corresponding to a
block of pixels of size

√
M ×√

M with a single element equal to the sum of those
elements. Hence, the resulting vector of the transformation will have cardinality
N ′ = N

M (from this point of view the transformation denoted by A acts as a
binning operator). By applying this transformation on the template vector X
and on a generic candidate vector Yj the new vectors X̄ and Ȳj are obtained:

X̄ = AX (2)
Ȳj = AYj (3)

The matrix p-norm, defined in [1] as:

||A||p = sup
x �=0

||AX ||p
||X ||p = M

p−1
2p (4)

induces the following inequality:

||A||p · ||X ||p ≥ ||X̄||p (5)

By applying the transformation defined by A to the template X and the generic
candidate Yj equation (5) is rewritten as:

||A||p · δp(X, Yj) ≥ δp(X̄, Ȳj) (6)

By introducing a threshold, D, which is obtained by computing δp on a good
candidate Yb:

D = ||A||p · δp(X, Yb) (7)

a pruning condition can be tested for each candidate Yj :

δp(X̄, Ȳj) > D (8)
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If (8) holds, then Yj does not represent a better candidate compared to Yb due
to (6).

Yb is obtained by performing an exhaustive search between X̄ and the K
transformed candidates Ȳ1, · · · , ȲN and by choosing the candidate which leads
to the global minimum.

The basic LRP approach described so far is extended in [1] by defining sev-
eral levels of resolution and, correspondingly, a transformation matrix for each
pair of consecutive levels. Given T +1 levels of resolution, with level 0 being the
full resolution one and level T being the lowest resolution one, first the transfor-
mation is iteratively applied in order to obtain the several versions of the vectors
at reduced cardinality. Each element is obtained by summing corresponding M
elements of its upper resolution level (usually, at the lowest level each vector
is made out of a single element, which coincides with the sum of all the full-
resolution elements). That is, at level t the cardinality of vector Yj is reduced
from N (original size) to N

Mt . We will refer to Xt and Y t
j as the template and

candidate vectors transformed to level t.
After this initial step, the basic LRP is iterated T times, starting from the

lowest resolution level (i.e. T ). At generic step t first the initial candidate is de-
termined by searching between those candidates not pruned so far in the current
level (i.e. t) and by choosing the one which leads to the minimum distance, i.e.
Yb. Then, the threshold Dt is computed as:

Dt = ||A||p,t · δp(X, Yb) (9)

with the transformation matrix p-norm ||A||p,t being as:

||A||p,t = M
t·(p−1)

2p (10)

Finally the pruning test is applied at each left candidate of the current level t:

δp(Xt, Y t
j ) > Dt (11)

As it can be easily inferred, the strength of the method is to prune the majority
of candidates at the lower levels, based on the fact that computing δp(Xt, Y t

j )
requires less operations than computing δp(X, Yj).

3 Enhanced-LRP algorithms

Since LRP is a data dependent technique, the choice of Yb determines the ef-
ficiency of the sufficient conditions and the performance of the algorithm. Our
idea consists in rapidly finding a better guess of Yb compared to that found
by the LRP algorithm. If Yb could be conveniently initialized previously to the
matching process, the algorithm could benefit of it by deploying a more effective
threshold Dt as well as by reducing the number of evaluated candidates at each
iteration holding in the same time the property of finding the global minimum
(i.e. exhaustiveness).
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Hence, we propose to determine an estimation of the global minimum, Ỹb, by
means of any non-exhaustive algorithm which is able to perform this operation
at a small computational cost compared to that of the whole LRP algorithm.
The choice of the non-exhaustive algorithm can be made between a number of
methods proposed so far in literature, which reduce the search space in order to
save computations (i.e. [2], [3], [4], [5]). In our implementation, which will be used
for the experimental results proposed in this paper, we have chosen a standard
two-stage coarse-to-fine algorithm, and Ỹb is initialized as the candidate referred
to the best score obtained.

The use of a non-exhaustive method for estimating Ỹb requires a fixed over-
head. Nevertheless, this method is more likely to find a candidate closer to the
global minimum compared to the Yb found by the LRP algorithm, especially at
the lowest levels of resolution, where candidate vectors are reduced up to a very
few elements (typically up to one at the lowest level). Once Ỹb has been deter-
mined by means of a fast non-exhaustive algorithm, we propose three different
strategies for exploiting this information in the LRP framework, thus leading to
three different algorithms, referred to as ELRP 1, ELRP 2 and ELRP 3. It is
important to point out that, despite the use of a non-exhaustive method for the
estimation of Ỹb, the three proposed algorithms are all exhaustive since they all
guarantee that the best candidate found is the global minimum. This is due to
the fact that the proposed algorithms throughout the template matching process
use the same bounding functions as LRP (i.e. 9, 11) but plugging in different
candidates. Hence if a candidate is pruned by any of the conditions applied by
the ELRP algorithms, then it is guaranteed to have a score higher than that of
the global minimum.

3.1 ELRP 1

The non-exhaustive algorithm applied at the beginning gives us a candidate, Ỹb,
and its distance from the template X computed at highest level (i.e. level 0),
δp(X, Ỹb). Hence, at each step t, the first threshold Dt is determined by means
of Ỹb:

Dt = ||A||p,t · δp(X, Ỹb) (12)

Then each candidate Yj is tested with the pruning condition:

δp(Xt, Y t
j ) > Dt (13)

If (13) holds, candidate Yj is pruned from the list. Thanks to this approach,
differently from [1], at the lower level we avoided to execute an exhaustive search
in order to initialize Yb. Nevertheless, if Ỹb has been initialized badly, its use
along the several pruning levels would result to bad efficiency of the pruning
conditions, yielding to poor performance of the algorithm. Hence, at each level
t, subsequently to the pruning test, an updating procedure of candidate Ỹb is
applied. In particular, we search for the candidate still left in the list L with the
minimum distance:

Yb,l = arg min
Y t

j ∈L
{δp(Xt, Y t

j )} (14)
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Fig. 1. A graphical visualization of the ELRP 1 algorithm. Each layer represents one
of the T + 1 levels of the algorithm, while each block represents a candidate at a
particular level of resolution. Gray squares correspond to candidate Yb,l, while black
squares correspond to candidate Ỹb, each one at its respective stage of the algorithm.
The candidate corresponding to the global minimum is denoted by letter W , while at
each stage the pruned candidates are denoted with a crossed box.

Then, if Yb,l and Ỹb don’t coincide, they are compared by looking at their distance
at highest resolution, and the candidate which concurs for the minimum distance
is selected as the new Ỹb to be used for next step:

Ỹb = arg min
Y =Ỹb,Yb,l

{δp(X, Y )} (15)

It is worth noting that the determination of Yb,l in (14) only requires l additional
tests, with l being the number of candidates still left in the list after the appli-
cation of the pruning condition, since the term δp(Xt, Y t

j ) is already computed
for the pruning test (13). Hence, it is expected that ELRP 1 holds the potential
to speed-up the LRP method since, compared to LRP, the search space in which
to search for the minimum is reduced by all the candidates already pruned by
(13). Nevertheless, there might be some cases in which the effectiveness of the
bounding threshold deployed by ELRP 1 (12) is lower than the corresponding
one of LRP: this aspect, together with the need of an initial overhead to estimate
Ỹb, can cause overall a slower performance of ELRP 1 compared to LRP.

Figure 1 shows a graphical description of the ELRP 1 algorithm. At each level
there are K candidates, represented by the squares. Going bottom up, thanks
to the elimination conditions applied some candidates are iteratively pruned at
each level (denoted by the crossed boxes), while the others are propagated up to
the top level, where the exhaustive search is determined on the left vectors and
the best candidate is found (denoted by W ). At start-up, i.e. step (0), candidate
Ỹb is determined by means of the non-exhaustive technique and used to prune the
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candidates at level T. Then, at each level, after applying the pruning condition
(13) on the candidates still in the list, the two vectors Ỹb and Yb,l (respectively,
the black and the gray squares) are compared and the best between the two at
highest level (i.e. 0) is chosen (15) as Ỹb for the upper level.

3.2 ELRP 2

As outlined in Section 2, at each step t the LRP algorithm performs an exhaustive
search between the candidates left in the list in order to determine Yb as the
candidate which corresponds to the minimum distance, so that it can be used
for the computation of the threshold Dt. Conversely, method ELRP 1 reduces
this search at each step by means of Ỹb and a strategy for updating Ỹb by means of
Yb,l. A different approach is devised by keeping the exhaustive search performed
between the candidates left at the lower level. With this approach, at each step
t we first determine Yb as the candidate yielding the minimum score at level t
between the candidates left in the list. Then, Ỹb is updated as:

Ỹb = arg min
Y =Ỹb,Yb

{δp(X, Y )} (16)

It is worth to note that also this approach contains a strategy which allows
for using a different candidate in case Ỹb is estimated badly by the initial non-
exhaustive step. This is performed by means of the comparison in (16). It is
also important to point out that, thanks to (16), the bounding terms deployed
by ELRP 2 are guaranteed being always more (or, at worst, equally) effective
compared than the corresponding ones devised by LRP. In terms of performance,
this guarantees that in the worst case ELRP 2 will be slower than LRP only
for the amount of time needed to carry out the estimation of Ỹb, which, as
previously mentioned, has to be small compared to the overall time required by
the algorithm.

3.3 ELRP 3

In this third approach, we propose to change the rule by which the candidates
are tested. Each candidate Yj is compared (13) against all the possible pruning
conditions which can be determined until either it is pruned, or the last level
(i.e. level 0) is reached, which means the distance between X and Yj must be
computed. Of course, the succession of the pruning conditions follows the original
algorithm, going from the lowest level (i.e. level T ) up to the highest one. Hence,
each candidate will be individually tested against up to T pruning conditions.

This approach allows to devise an updating procedure as follows. At the
beginning of the algorithm, the thresholds Dt are computed at each level by
means of Ỹb. When a candidate Yj can not be skipped by any of the T conditions
applied, the actual distance δp(X, Yj) must be computed and the best candidate
is updated as:

Ỹb = arg min
Y =Ỹb,Yj

{δp(X, Y )} (17)
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Furthermore, the algorithm does not need anymore to keep a list where to store
the candidates which have not been pruned so far, with extra savings for what
means operations and memory requirements.

Fig. 2. The reference image affected by distortion in illumination and pose used in
Experiment 1 (top, left) and that affected by artificial noise used in Experiment 2
(top, right). Bottom: the 10 templates used in the experimental section.

4 Experimental results

This section compares the results obtained using the ELRP 1, ELRP 2 and ELRP
3 algorithms described in Section 3 with those yielded by the LRP algorithm.
In the situation considered in [1], i.e. images affected by artificial noise, LRP
yields notable speed-ups with respect to the FS algorithm. Nevertheless, we are
also interested in testing the algorithms with more typical distortions found in
real-world applications, i.e. those generated by slight changes in illumination and
position. Thus, we carry out two experiments.

In the first experiment 10 templates are extracted from an image as shown in
fig. 2 (bottom), then the reference image is chosen as an image taken at a differ-
ent time instant from a close-by position and with slightly different illumination
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conditions (see Figure 2, top left). Hence, the distortions between the templates
and the reference image are generated by slight changes in pose and illumina-
tion, which can be regarded as the typical distortions found in real template
matching scenarios. Then, in order to complete the experimental framework, we
propose another experiment where the proposed algorithms are tested in the
same conditions as in [1], that is, artificial noise is added to the image where
the templates where extracted from (see Figure 2, top right). In particular, the
introduced distortion is represented by i.i.d. double exponential (Laplace) dis-
tributed noise with parameters σ = 10 and μ = 0. The 10 templates are the
same as in experiment 1 (Figure 2, bottom).

To be coherent with the experimental framework proposed in [1], each tem-
plate used for the two experiments is of size 64 × 64. This allows to have
M = 4 = 2 × 2, and the number of pruning levels T = 6. For the same reason,
we use here the SSD function (i.e. p = 2). All the algorithms deploy incremen-
tal calculation techniques (i.e. [6]) for efficient computation of the transformed
candidates at each level of resolution. Finally, the benchmark platform was a
Linux workstation based on a P4 3.056 GHz processor; the algorithms were
implemented in C and compiled using Gcc with optimization level O3.

Table 1. Speed-ups yielded by the LRP algorithm and the three proposed methods
vs. FS algorithm in Experiment 1.

Template LRP ELRP1ELRP2ELRP3
T1 11.3 17.9 16.4 17.9
T2 26.0 43.8 35.8 47.9
T3 7.1 9.9 9.5 9.8
T4 5.0 9.9 9.7 9.8
T5 18.2 28.6 25.2 29.8
T6 11.4 25.5 22.8 26.4
T7 13.1 25.0 22.2 25.7
T8 22.1 27.7 24.4 28.9
T9 11.5 12.8 ∗ 14.2 ∗ 24.0 ∗
T10 11.6 11.0 ∗ 11.5 ∗ 17.2 ∗

Mean 13.7 21.2 19.2 23.7
St.Dev. 6.5 11.0 8.4 11.2

Table 1 and Table 2 show the speed-ups (i.e. ratios of measured execution
times) yielded by LRP, ELRP 1, ELRP 2 and ELRP 3 with regards to the
FS SSD-based algorithm. As for the ELRP algorithms, the execution times in-
clude also the initial non-exhaustive step. Table 1 is relative to the dataset of
experiment 1, while Table 2 shows the results concerning experiment 2. Fur-
thermore, in the two tables symbol ∗ is used to highlight those cases where the
non-exhaustive algorithm applied at the first step does not find the global min-
imum: overall, this happens in 3 cases out of 20. Nevertheless, though already
specified previously, we remind here that even in the cases marked with an ∗
the three ELRP algorithms are always guaranteed to find the global minimum.
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Table 2. Speed-ups yielded by LRP algorithm and the three proposed methods vs. FS
algorithm in Experiment 2.

Template LRP ELRP1ELRP2ELRP3
T1 25.7 30.0 25.9 31.6
T2 36.5 39.5 32.7 42.7
T3 20.8 24.6 22.0 25.7
T4 20.8 23.9 21.5 24.9
T5 16.4 18.5 17.0 18.8
T6 21.8 25.0 22.2 26.2
T7 21.2 23.9 21.1 24.6
T8 24.7 32.5 28.1 34.8
T9 15.0 11.1 ∗ 14.4 ∗ 12.6 ∗
T10 14.6 15.5 14.5 15.6

Mean 21,8 24,5 21,9 25,8
St.Dev. 6,4 8,3 5,8 9,0

Finally, the two tables also report the mean speed-up and its standard deviation
yielded by each algorithm over the dataset.

Table 1 shows that in most cases the ELRP algorithms yield notable speed-
ups compared to LRP, while in the less favorable cases the behavior of the two
classes of algorithms can be regarded as equivalent. In particular, as it can be
inferred from Table 1, ELRP 1 and 2 are able to determine computational savings
compared to LRP in 9 cases out of 10 while, for what means ELRP 3, it is always
faster than LRP. Hence, ELRP 3 can be regarded as the most efficient algorithm
in the considered template matching scenario. This can also be inferred by the
mean speed-ups, which for all ELRPs is notably higher compared to that of
LRP, and it is highest for ELRP3. Nevertheless, the standard deviation yielded
by the ELRPs is also higher than that of LRP.

As for Experiment 2, Table 2 shows that even if the computational advan-
tages of ELRPs with respect to LRP are less evident when artificial noise is
the only distortion, they are still present. For instance, ELRP 1 and 3 yield to
computational savings compared to LRP in 9 cases out of 10. Instead, ELRP 2
obtains results comparable to LRP, being faster in 6 cases out of 10 and with
speed-ups often similar to those of the original technique. Overall, compared to
LRP, the reported mean speed-ups are higher for ELRP 1 and ELRP 3, and
almost equivalent for ELRP 2.

To complement previous results, Table 3 and Table 4 report the percent-
ages of candidates skipped by the conditions applied at each pruning level
P6, · · · , Pt, · · · , P1, with the last column showing the total percentage of skipped
candidates. By looking at these tables, it can be seen that often the pruning
conditions applied at the lowest levels by LRP results not to be effective: i.e.,
overall the first condition prunes less than 1.0% in 14 cases out of 20. Thus, the
pruning load is pushed on the higher levels, which increases the total number
of operations required by LRP. Conversely, in the ELRP algorithms the corre-
sponding conditions are usually much more effective due to the estimation of
candidate Ỹb. This happens also when the initial step does not find the global
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Table 3. Efficiency of the pruning conditions used by the algorithms in Experiment 1.

T Alg P6% P5% P4% P3% P2% P1% PTOT %
T1 LRP 9.2 13.8 11.3 60.0 4.7 0.9 100.0

ELRP1 49.7 13.9 16.4 14.6 4.5 0.9 100.0
ELRP2 49.7 13.9 16.4 14.6 4.5 0.9 100.0
ELRP3 49.7 13.9 16.4 14.6 4.5 0.9 100.0

T2 LRP 53.5 23.8 6.0 16.6 0.0 0.0 100.0
ELRP1 92.9 4.2 2.2 0.7 0.0 0.0 100.0
ELRP2 92.9 4.2 2.2 0.7 0.0 0.0 100.0
ELRP3 92.9 4.2 2.2 0.7 0.0 0.0 100.0

T3 LRP 2.9 0.5 30.9 37.7 25.0 3.0 100.0
ELRP1 11.7 9.6 20.0 41.5 16.9 0.3 100.0
ELRP2 11.7 9.6 20.0 41.5 16.9 0.3 100.0
ELRP3 11.7 9.6 20.0 41.5 16.9 0.3 100.0

T4 LRP 0.4 0.0 6.8 27.8 63.6 1.4 100.0
ELRP1 8.8 6.6 30.5 37.7 15.5 0.8 100.0
ELRP2 8.8 6.6 30.5 37.7 15.5 0.8 100.0
ELRP3 8.8 6.6 30.5 37.7 15.5 0.8 100.0

T5 LRP 0.3 11.4 72.1 13.8 2.4 0.0 100.0
ELRP1 27.6 37.7 30.4 4.1 0.1 0.0 100.0
ELRP2 27.6 37.7 30.4 4.1 0.1 0.0 100.0
ELRP3 27.6 37.7 30.4 4.1 0.1 0.0 100.0

T6 LRP 0.2 0.3 15.3 82.8 1.4 0.0 100.0
ELRP1 15.4 27.6 52.3 4.6 0.1 0.0 100.0
ELRP2 15.4 27.6 52.3 4.6 0.1 0.0 100.0
ELRP3 15.4 27.6 52.3 4.6 0.1 0.0 100.0

T7 LRP 8.8 0.1 65.2 17.6 7.3 1.1 100.0
ELRP1 57.0 15.5 15.7 10.0 1.6 0.2 100.0
ELRP2 57.0 15.5 15.7 10.0 1.6 0.2 100.0
ELRP3 57.0 15.5 15.7 10.0 1.6 0.2 100.0

T8 LRP 0.0 2.3 95.1 2.7 0.0 0.0 100.0
ELRP1 14.3 42.3 40.8 2.7 0.0 0.0 100.0
ELRP2 14.3 42.3 40.8 2.7 0.0 0.0 100.0
ELRP3 14.3 42.3 40.8 2.7 0.0 0.0 100.0

T9 LRP 0.9 5.6 7.3 85.9 0.3 0.0 100.0
ELRP1 15.1 10.3 22.3 45.6 6.7 0.0 100.0
ELRP2 15.1 10.3 22.3 52.0 0.3 0.0 100.0
ELRP3 29.7 28.6 28.1 12.9 0.6 0.1 100.0

T10 LRP 0.0 1.4 41.8 48.4 8.4 0.0 100.0
ELRP1 7.0 6.0 16.1 63.3 7.4 0.1 100.0
ELRP2 7.0 6.0 30.2 49.3 7.5 0.0 100.0
ELRP3 13.4 21.5 31.6 32.2 1.3 0.1 100.0

minimum, which means that Ỹb still represents a better estimation of the best
match (as regards the matching score) with respect to those used by LRP for
the initial pruning conditions. For instance, in the worst case the first condition
prunes 4.7%. Nevertheless, in a few cases the better effectiveness of the initial
pruning conditions does not imply a speed-up with respect to LRP due to the
computational overhead associated with the initial search.
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Table 4. Efficiency of the pruning conditions used by the algorithms in Experiment 2.

T Alg P6% P5% P4% P3% P2% P1% PTOT %
T1 LRP 4.3 82.1 6.7 5.0 1.7 0.1 100.0

ELRP1 76.2 10.3 6.7 5.0 1.7 0.1 100.0
ELRP2 76.2 10.3 6.7 5.0 1.7 0.1 100.0
ELRP3 76.2 10.3 6.7 5.0 1.7 0.1 100.0

T2 LRP 86.5 9.3 1.5 2.3 0.4 0.0 100.0
ELRP1 93.5 2.2 1.5 2.3 0.4 0.0 100.0
ELRP2 93.5 2.2 1.5 2.3 0.4 0.0 100.0
ELRP3 93.5 2.2 1.5 2.3 0.4 0.0 100.0

T3 LRP 0.1 11.0 79.9 9.0 0.0 0.0 100.0
ELRP1 24.1 23.1 43.8 9.0 0.0 0.0 100.0
ELRP2 24.1 23.1 43.8 9.0 0.0 0.0 100.0
ELRP3 24.1 23.1 43.8 9.0 0.0 0.0 100.0

T4 LRP 0.0 2.8 89.3 7.7 0.2 0.0 100.0
ELRP1 19.3 18.8 54.0 7.7 0.2 0.0 100.0
ELRP2 19.3 18.8 54.0 7.7 0.2 0.0 100.0
ELRP3 19.3 18.8 54.0 7.7 0.2 0.0 100.0

T5 LRP 0.0 2.8 75.6 18.4 3.0 0.1 100.0
ELRP1 17.8 23.1 37.6 18.4 3.0 0.1 100.0
ELRP2 17.8 23.1 37.6 18.4 3.0 0.1 100.0
ELRP3 17.8 23.1 37.6 18.4 3.0 0.1 100.0

T6 LRP 0.0 5.5 90.8 3.6 0.1 0.0 100.0
ELRP1 9.5 29.5 57.2 3.6 0.1 0.0 100.0
ELRP2 9.5 29.5 57.2 3.6 0.1 0.0 100.0
ELRP3 9.5 29.5 57.2 3.6 0.1 0.0 100.0

T7 LRP 0.1 77.9 11.0 7.7 2.9 0.5 100.0
ELRP1 65.1 12.9 11.0 7.7 2.9 0.5 100.0
ELRP2 65.1 12.9 11.0 7.7 2.9 0.5 100.0
ELRP3 65.1 12.9 11.0 7.7 2.9 0.5 100.0

T8 LRP 0.0 26.8 73.1 0.1 0.0 0.0 100.0
ELRP1 15.2 64.9 19.8 0.1 0.0 0.0 100.0
ELRP2 15.2 64.9 19.8 0.1 0.0 0.0 100.0
ELRP3 15.2 64.9 19.8 0.1 0.0 0.0 100.0

T9 LRP 0.1 0.1 66.7 30.3 2.7 0.1 100.0
ELRP1 4.7 2.7 9.0 80.8 2.7 0.1 100.0
ELRP2 4.7 2.7 59.5 30.3 2.7 0.1 100.0
ELRP3 17.7 14.1 25.4 34.0 8.1 0.5 100.0

T10 LRP 0.0 0.0 55.9 42.7 1.4 0.0 100.0
ELRP1 9.4 18.1 28.4 42.7 1.4 0.0 100.0
ELRP2 9.4 18.1 28.4 42.7 1.4 0.0 100.0
ELRP3 9.4 18.1 28.4 42.7 1.4 0.0 100.0

For what means the behavior of the 3 proposed algorithms, ELRP 2 is the one
which obtains the most similar performance compared to the original algorithm.
In particular, it is able to obtain notable speed-ups in Experiment 1, not counter-
parted by particular negative performances. These results confirm the trend
exposed in Section 3, that is the performance of ELRP 2 compared to LRP
is lower bounded by the computational weight of the non-exhaustive overhead
needed to initialize Ỹb, which ought to be small. This can be seen by considering
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that in the worst case, i.e. T2 of Experiment 2, the speed-up of LRP to ELRP
2 is just 1.1. Even when the non-exhaustive initial step can not find the global
minimum (i.e. the ∗-cases in the tables) the behavior of the algorithm turns out
to be at worst very close to that of LRP. In addition, it is also interesting to
note that tables 3, 4 confirm that the aggregated candidates pruned by ELRP
2 at each conditions are always equal or higher than those pruned respectively
by the conditions devised by LRP.

On the other hand, experimental results demonstrate that the strategies de-
ployed by ELRP 1 and ELRP 3 are more effective than that of LRP since they
both are able to obtain higher benefits in terms of computational savings com-
pared to ELRP 2 on the average. In particular, ELRP 3 is the algorithm which
yields the highest speed-ups and whose behavior is always favorable compared to
LRP along the considered dataset, with the exception of a single instance where
the speed-up obtained by ELRP 3 is slightly less than that of LRP. Hence, it can
be regarded as the best algorithm, especially if the distortions between image
and template are those typically found in real template matching applications.

5 Conclusions

We have shown how the LRP technique described in [1] can be enhanced by
means of three different full-search equivalent algorithms (referred to as ELRP
1, ELRP 2 and ELRP 3), which deploy an initial estimation of a good candidate
to be used in the pruning process. The proposed algorithms are able to yield
significant speed-ups compared to the LRP technique in an experimental frame-
work where distortions between templates and reference images are represented
by changes in pose and illumination as well as by artificial noise. The variations
proposed in our work do not increase the memory requirements of the original
algorithm. Besides, it comes natural to expect that further improvements can be
obtained if a more efficient non-exhaustive technique is used to determine the
initial candidate, Ỹb, in spite of the naive method we implemented for our tests.
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