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Abstract

Accurate, dense 3D reconstruction is an important re-
quirement in many applications, and stereo represents a
viable alternative to active sensors. However, top-ranked
stereo algorithms rely on iterative 2D disparity optimization
methods for energy minimization that are not well suited
to the fast and/or hardware implementation often required
in practice. An exception is represented by the approaches
that perform disparity optimization in one dimension (1D)
by means of scanline optimization (SO) or dynamic pro-
gramming (DP). Recent SO/DP-based approaches aim to
avoid the well known streaking effect by enforcing vertical
consistency between scanlines deploying aggregated costs,
aggregating multiple scanlines, or performing energy mini-
mization on a tree. In this paper we show that the accuracy
of two fast SO/DP-based approaches can be dramatically
improved by exploiting a non-iterative methodology that, by
modeling the coherence within neighboring points, enforces
the local consistency of disparity fields. Our proposal al-
lows us to obtain top-ranked results on the standard Mid-
dlebury dataset and, thanks to its computational structure
and its reduced memory requirements, is potentially suited
to fast and/or hardware implementations.

1. Introduction

Inferring dense accurate 3D reconstruction is an impor-
tant requirement in many computer vision applications, and
depth from stereo is a well known approach to accomplish
this task by means of two or more synchronized cameras. In
spite of the efforts made in the last decades [17], accurate
localization of corresponding points in two or more cameras
of the stereo rig (i.e. the correspondence problem), is still
an important and open problem. According to [ 17], most
dense stereo algorithms perform four steps: cost computa-
tion, cost aggregation, disparity optimization and disparity

refinement. In local algorithms, the focus is on cost ag-
gregation and disparity optimization is typically a simple
winner takes all (WTA) strategy. Conversely, in global al-
gorithms, cost aggregation is often ignored and the focus
is on disparity optimization. Local algorithms are poten-
tially faster than global approaches, and their typically lim-
ited memory requirements renders these approaches suited
to devices with constrained resources (e.g. FPGA, embed-
ded devices). In recent years, for both categories, significant
improvements have been proposed. However, it notewor-
thy that top-ranked algorithms1 tackle the correspondence
problem by deploying 2D disparity optimization methods
that enforce the smoothness assumption in vertical and hor-
izontal directions. Unfortunately, in spite of the advent of
powerful disparity optimization techniques such as graph
cut (GC) and belief propagation (BP) [18], top-ranked al-
gorithms [13, 24, 26, 25, 27, 3, 1, 22, 19] are typically
slow and, mainly due to their iterative nature and their huge
memory requirements, unsuited to devices with constrained
resources. However, scanline Optimization (SO) [17, 10]
and dynamic Programming (DP) [17, 23, 21], a particu-
lar class of disparity optimization methods constrained to
subsets of the stereo pair (i.e. 1D), allow for efficiently
obtaining reasonable, accurate results. SO/DP-based algo-
rithms are fast [17, 10, 23, 21, 5] and well suited to em-
bedded devices or FPGAs as reported in [7]. A different
methodology, referred to as locally consistent (LC), aimed
at improving the disparity fields provided by local algo-
rithms, was proposed in [15]. The LC approach is an non-
iterative technique that enforces the local consistency of dis-
parity fields by explicitly modeling the mutual relationships
among neighboring points. In this paper, we show that en-
forcing local consistency of disparity fields by means of the
LC technique enables us to dramatically improve the per-
formance of two fast stereo algorithms based on the SO and
DP disparity optimization methods.

1http://vision.middlebury.edu/stereo/eval/



2. Related work

In this section, we briefly review disparity optimization
methods (focusing our attention on approaches that perform
1D energy minimization) and the LC technique.

2.1. Methods for efficient disparity optimization

Although local algorithms based on adaptive weights
methods [28, 12, 16], reviewed and evaluated in [8, 20],
yield excellent results, according to the Middlebury evalua-
tion site, most of the 10 top-performing stereo algorithms
[13, 24, 26, 25, 27, 3, 1, 22, 19, 12] rely on global ap-
proaches (i.e [13, 24, 26, 25, 27, 3, 1, 22, 19]). Global
approaches pose the correspondence problem in terms of
a pixel-labeling assignment of disparities searching for the
disparity field D that minimizes the following energy func-
tion:

E(D) = Edata(D) + Esmooth(D) (1)

The data term Edata encodes how well the disparity as-
signment fits with the stereo pair and, often, it is the sum of
per-pixel data costs C(D(p) (see [11] for an evaluation of
costs typically deployed in stereo) between one point in the
reference image R and the supposed correspondent point in
the target image T ,

Edata(D) =
∑

p∈R

C(D(p)) (2)

Sometimes (e.g. [26, 23]) the point-wise data cost
C(D(p) is replaced by an aggregated cost computed over
neighboring pixels (a support window centered in each ex-
amined point).

The smoothness term Esmooth(D) penalizes disparity
changes modeling the interaction between each point p and
its neighboring pixels q ∈ N (p). In global approaches,
N (p) includes points in vertical and horizontal directions
(typically, the four nearest neighbors of p on the pixel grid),
while in SO/DP-based approaches, the smoothness con-
straint is enforced only in one direction (typically N (p) in-
cludes only one point along a scanline). The former dis-
parity optimization methods are referred to as 2D, while the
latter are referred to as 1D. Clearly, 2D approaches perform
better as they enable us to enforce inter and intra scanline
smoothness assumptions.

Some approaches use additional terms for penalizing oc-
clusions, enforcing consistency or visibility between im-
ages, and often segmentation is deployed as a further ad-
ditional constraint [10]. Top-ranked stereo algorithms min-
imize energy function (1), performing a 2D disparity opti-
mization. However, since this turns to be a NP-hard prob-
lem, global approaches [13, 26, 25, 3, 1, 22, 19] under par-
ticular hypotheses [18] on (1) rely on efficient energy min-
imization strategies based on GC or BP. Nevertheless, GC

and BP are often too slow for practical use. Moreover, their
iterative computational structure and their memory require-
ments render these approaches unsuited to devices with lim-
ited resources. The algorithmic optimization strategies pro-
posed in [6] significantly reduce the running time as well
the memory requirements of the BP algorithm. However,
the effectiveness of this approach is not comparable to that
of the original BP approach deployed by most top-ranked
algorithms.

Conversely, SO [17] and DP [2, 17] approaches perform
a 1D optimization restricted to individual scanlines that ef-
ficiently minimizes (1) in polynomial time. SO minimizes
(1) in a single phase, while DP minimizes it in two phases
enforcing the ordering constraint. The memory require-
ment for both approaches is quite low; for SO it is propor-
tional to the disparity range dmax − dmin, while for DP it
is proportional to W × (dmax − dmin) (being W the im-
age width). However, the 1D optimization adopted by basic
SO and DP approaches leads to the well-known streaking
effect. To overcome this problem, the key idea is to en-
force constraints incoming from regions outside the indi-
vidual scanline. Three methodologies have been proposed.
The first methodology [23], referred to as RTGPU, uses as
a data term the cost computed over a vertical support by
means of the adaptive weight approach [28] in order to in-
clude cues from neighboring scanlines. RTGPU runs in real
time, computing the aggregated cost on a GPU and the DP-
based optimization on the CPU. The second methodology
[10] avoids the streaking effect by combining SOs, com-
puted along multiple directions (typically 8 or 16). This
method, referred to as C-Semiglobal, is the best performing
SO/DP based approach on the Middlebury evaluation site
and it has a running time of few seconds. Compared to the
original Semiglobal approach [9], C-Semiglobal includes a
disparity refinement step based on mean shift segmentation
[4]. The third methodology avoids the streaking effect by
performing 1D disparity optimization on a tree rather than
on a scanline. In [21] DP-based optimization is performed
on a tree structure made of the most important edges. This
approach was improved by replacing edges with segments:
[14] deploys the mean shift algorithm while [5] deploys a
fast line segmentation algorithm. Algorithm [14] has a run-
ning time of about 10 seconds while [21] and [5] run in near
real time.

2.2. The LC technique

A different methodology aimed at enforcing the local
consistency of a dense disparity field was proposed in [15].
The LC approach explicitly models the mutual relationships
among neighboring pixels of a dense disparity field pro-
vided by a local algorithm deriving a posterior probabil-
ity for each disparity hypothesis. Disparity coherence is
enforced by performing a local optimization restricted to
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Figure 1. In blue are reported, for reference image R, four
points examined by a local algorithm that deploys a 5 × 5
squared support. The local algorithm sets for the four blue
points α, β, γ, δ four potentially different disparity hypotheses
(i.e. D(α), D(β), D(γ), D(δ)). Therefore, within each support,
the same red point implicitly assumes four potentially different
disparity hypotheses (according to the blue points). In the figure
we show only 4 out of 25 possible configurations resulting with
5 × 5 supports. [Best viewed in color]

neighboring points.
In local algorithms, once a disparity for one point is de-

termined, implicit assumptions concerned with the points
within the support window are made. That is, deploying
frontal-parallel support, as typically made by most local
approaches, each element of the support is assumed at the
same disparity of the central point. The LC approach ex-
plicitly models this behavior by enforcing that the result-
ing disparity field is piecewise smooth. Let’s assume that
for each point of the reference image, the disparity is de-
termined by a local algorithm that deploys a 5 × 5 support
window (i.e. the matching cost for the central point of the
5 × 5 window is the sum of the matching costs within the
support). Once the optimal disparity for the central point
has been selected (typically by means of a WTA strategy in
local approaches), all the points within the 5 × 5 support
are implicitly assumed at the same disparity of the central
point. For example, in Figure 1 is depicted this behavior
for the reference image R deploying a 5× 5 frontal-parallel
support window. In this case the same red point is included
in 25 different support windows. However, for simplicity,
in Figure 1 we report only 4 out of 25 possible configura-
tions. The figure shows that for the 4 different blue points
α, β, γ, δ the same red point is potentially assumed at 4 dif-
ferent disparity D(α), D(β), D(γ), D(δ) by the 5 × 5 sup-
port windows deployed in this example. More precisely,

with a M × N support window, each point of the reference
image (e.g. the red point in Figure 1) is subject to M × N
disparity hypotheses by neighboring points (e.g. blue points
in Figure 1). Given a certain support window size, the set
of points that are allowed to pose a disparity hypothesis for
the same red point p is called the active support of point p
(we note that the active support for point p, in this exam-
ple, is given by the 5 × 5 square window centered in p).
Moreover, it is noteworthy that a similar behavior can be
modeled in the target image T since, once a correspondence
has been established, the same disparity hypothesis for each
point of the support window is also made in T . However,
in this case, the active support in T is distributed according
to the disparity hypothesis established for each correspon-
dence (i.e. this means that points within the active support
of point p′ in the target image might not set any disparity
hypothesis for p′). Each time that one red point is included
by the support of a blue point the belief of the disparity hy-
pothesis implicitly made for the red point is encoded by the
plausibility [15] of that event. Plausibility is defined accord-
ing to the image content as the posterior probability of the
three joint events as depicted in Figure 2.

Figure 2. The three events involved in the computation of plausi-
bility for the red points in R and T given a certain disparity hy-
pothesis for the blue points in R and T. [Best viewed in color]

That is, modeling local surfaces as frontal-parallel, the
posterior probability P R

f⇀g(D(f)) of a specific disparity
hypothesis D(f) implicitly made by the blue point f on
the red point g is related to the spatial proximity between
(f, g), (f ′, g′) and to the color proximity between (f, g),
(f ′, g′), (f, f ′). Color and spatial proximity are encoded
according to the Euclidean distance (see [15] for details).
For each point of reference and target image, the plausibil-
ity of each disparity hypothesis made by the points belong-
ing to the active support are gathered. Thus, once every
element belonging to the active support S(g) of g of the
reference image has propagated its plausibility towards g,
ΩR(g|d) encodes for g the accumulated plausibility of each
disparity hypothesis d ∈ [dmin, dmax]. Formally, for R and
T the accumulated plausibility for disparity hypothesis d is:

ΩR(g | d) =
∑

i∈S(g)

PR
i⇀g(d) (3)
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Figure 3. Proposed overall approach.

ΩT (g′ | −d) =
∑

i′∈S′(g′)

PT
i′⇀g′(−d) (4)

Equation (3) provides for each point of reference image
R and for each disparity hypothesis the degree of consis-
tency with neighboring points belonging to the active sup-
port S.

3. Enforcing local consistency in SO/DP

Since our proposal aims at improving the accuracy of
fast algorithms for stereo correspondence, we restrict our
attention to approaches that rely on 1D techniques for dis-
parity optimization. However, in contrast to previous ap-
proaches [10, 9, 21, 14, 5, 23] that embody in the energy
terms cues from neighboring scanlines, we enforce, by de-
ploying the LC approach [15], a posteriori local consistency
of the dense disparity field provided by SO/DP-based algo-
rithms. Our proposal can be summarized as depicted in Fig-
ure 3. We assume that a SO/DP-based algorithm computes a
dense disparity field DS, processing two rectified images R
and T . As SO/DP-based approaches we have considered
in our experiments C-Semiglobal [10] and RTGPU [23].
Among the approaches based on 1D disparity optimization
reported on the Middlebury evaluation site, the former is
currently the top-ranked, while the latter is one of the fastest
approaches. The DS disparity fields provided by these al-
gorithms are processed according to the LC technique that,
for each point of R and T , provides the accumulated plau-
sibilities (3) and (4) for each disparity hypothesis within the
disparity range [dmin, dmax]. The accumulated plausibil-
ities (3) and (4) are normalized by the overall plausibility
of each point in order to obtain values ranging from 0 to 1.
Afterwards, the normalized accumulated plausibilities are
cross checked (i.e. multiplied) with their counterpart in the
other image according to the disparity range [dmin, dmax].
That is, for reference image R:

ΩRT (g | d) = (5)

ΩR(g | d)∑

i∈[dmin,dmax]

ΩR(g | i)
· ΩT (g − d | −d)∑

j∈[dmin,dmax]

ΩR(g − j | −j)

This step allows us to emphasize consistent disparity hy-
potheses within the reference R and the target image T . The
same process is applied to the plausibilities computed ac-
cording to the target image T (i.e. ΩTR(g′ | −d)). Al-
though not essential, we re-normalize the resulting cross-
checked plausibility in order to obtain values ranging from
0 to 1. The normalized accumulated plausibility ΩRT (g | d)
for reference image concerned with five disparity hypothe-
ses (i.e. d = 4,d = 5,d = 6,d = 7,d = 8) of the Tsukuba
stereo pair is shown in Figure 4. The results reported in
the figure are concerned with the disparity field DS of [10]
available on Middlebury. Once we have computed the two
normalized plausibility distributions, we simply choose for
each point of R and T the most plausible disparity label.
This allows us to obtain the two DR and DT disparity fields,
concerned with the reference and target image respectively,
as depicted in Figure 3. Although we obtain two indepen-
dent disparity fields DR and DT , it is noteworthy that the
most time consuming task required to obtain accumulated
normalized plausibilities (i.e. equations (3) and (4)) is com-
puted only once for the two images. The two disparity fields
DR and DT are left-right checked (LRC in Figure 3) in or-
der to detect inconsistent disparity assignments. As the re-
sulting disparity field DR∗ contains missing disparity assign-
ments, we fill-in these values in DR

∗ by means of a simple
interpolation stage (referred to as Int. in Figure 3). The in-
terpolation step scans the image in row order and replaces
the missing assignments with the lower values between the
two disparities that bound the missing values. Finally, we
process the interpolated disparity field with a single itera-
tion of a median filter and a bilateral filter. Although not
essential, this latter step allows us to smooth the effect of
the very simple interpolation stage. We do not use segmen-
tation (although the SO/DP algorithm that provides the dis-
parity field DS might use this cue). Moreover, our proposal
has some properties that we briefly highlight. LC allows us
to obtain two independent depth maps in a single pass by
simply accumulating the disparity hypotheses made on R
and T . The memory requirements for the same module are
quite low: in fact, an efficient implementation of LC would
store only W × (dmax − dmin) × N values, N being the
height of the active support deployed (in our successive ex-
periments we deploy 39 × 39 squared active supports). LC
is a non-iterative technique and its computational structure
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Figure 4. Accumulated plausibility for reference image R concerned with five disparity hypotheses (i.e. from left to right d = 4,d = 5,d =
6,d = 7,d = 8) of the Tsukuba stereo pair deploying the disparity field DS of [10] available on Middlebury.

is very simple and regular. This fact, combined with the ef-
ficiency of the 1D disparity optimization methods deployed
to obtain the initial DS disparity field, might allow us to ex-
ploit the powerful processing capabilities provided by state-
of-the-art computing architectures (multicore CPU, GPU,
SIMD instructions, FPGA) as already done for SO/DP ap-
proaches (e.g. [7],[23]). However, it important to note that
the experimental results reported in this paper do not take
advantage of these capabilities and are concerned with our
unoptimized C++ implementation of the LC approach and
the disparity fields DS for [23] and [10] available on the
Middlebury site. Finally, we observe that, although we have
restricted our attention to fast dense stereo algorithms based
on SO and DP, our proposal could be potentially applied to
any dense disparity field.

4. Experimental results

In order to assess the effectiveness of our proposal, we
consider two different representative algorithms deploy-
ing 1D and multiple 1D disparity optimization techniques.
The two considered algorithms are RTGPU [23] and C-
Semiglobal [10]. The former is one of the fastest algorithms
on the Middlebury evaluation site. RTGPU delivers dispar-
ity fields in real time by deploying the processing capabil-
ities of GPU (for cost aggregation) and CPU (for disparity
optimization). The 1D optimization technique deployed is
DP and currently it is ranked2 61th on Middlebury among
80 approaches. The latter (C-Semiglobal) is currently the
top-ranked algorithm among the approaches that rely on
1D disparity optimization. In this case, 16 independent SO
along as many different paths are aggregated for each dis-
parity hypothesis. C-Semiglobal uses a disparity refinement
step based on segmentation and the overall running time is
a few seconds on a standard PC deploying SIMD instruc-
tions [10]. Currently, this method is ranked 17th. For what
concerns our implementation of the LC approach [15] we
deploy a 39× 39 active support but we do not exploit GPU,
nor SIMD nor multi-core processing capabilities. Parame-
ters of the LC approach according to [15] are reported in
Figures 5 and 6.

2For simplicity we also include our proposals

Table 1 reports3 the accuracy, according to the three er-
rors NOCC, ALL, DISC (respectively: errors in non oc-
cluded regions, errors on the whole image, errors within
discontinuity regions), defined on the Middlebury evalua-
tion site by the two algorithms considered (i.e. RTGPU and
C-Semiglobal) and the top-ranked algorithms. The table
also reports on the accuracy of our proposal by deploying
the disparity fields provided by RTPGU and C-Semiglobal
(referred to as LC(RTGPU) and LC(C-Semiglobal) respec-
tively). Comparing RTGPU and the results obtained by
our proposal we notice a dramatic overall improvement for
each stereo pair and for each parameter (i.e. NOCC, ALL,
DISC). However, improvements are particularly notable on
Tsukuba and Venus. Our proposal allows us to gain more
than 45 positions (from 61 to 14) on the current Middlebury
ranking. Moreover, our proposal outperforms several algo-
rithms based on 2D disparity optimization as well as the
original C-Semiglobal.

Observing the same table we notice that our
LC(Semiglobal) proposal allows us to significantly
improve the overall performance of the already very
effective C-Semiglobal approach. In this case, enforcing
the local consistency of the C-Semiglobal disparity field
renders our proposal the 5th best performing algorithm.
This allows us to improve the ranking of 12 positions (from
17 to 5 on the current Middlebury evaluation site). Observ-
ing the results reported in the table for C-Semiglobal, we
notice that enforcing local coherence allows us to dramat-
ically improve the effectiveness of the original algorithm,
especially on Tsukuba and Venus. These results highlight
that a simple frontal-parallel support assumption deployed
by LC is more suited to images that best fit with this model
(i.e. images that are mostly made of frontal-parallel or
slanted surfaces such as Tsukuba and Venus).

Figures 5 and 6 show the original disparity fields and
the errors according to Middlebury methodology of the two
original approaches (RTGPU and C-Semiglobal) on the left.
On the right side of both images we report the disparity
fields and the errors provided by our proposal. Observing
the two figures we can clearly perceive in both cases the

3Additional experimental results in:
http://www.vision.deis.unibo.it/smatt/3DPVT2010.htm
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Tsukuba Venus Teddy Cones
Algorithm Rank NOCC ALL DISC NOCC ALL DISC NOCC ALL DISC NOCC ALL DISC

AdaptingBP [13] 1 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32
CoopRegion [24] 2 0.87 1.16 4.61 0.11 0.21 1.54 5.16 8.31 13.0 2.79 7.18 8.01
DoubleBP [26] 3 0.88 1.29 4.76 0.13 0.45 1.87 3.53 8.30 9.63 2.90 8.78 7.79
OutlierConf [25] 4 0.88 1.43 4.74 0.18 0.26 2.40 5.01 9.12 12.8 2.78 8.57 6.99
LC(C-Semiglobal) 5 1.08 1.57 5.86 0.13 0.25 1.86 5.56 11.0 13.9 2.86 8.31 7.50
SubPixDoubleBP [27] 6 1.24 1.76 5.98 0.12 0.46 1.74 3.45 8.38 10.0 2.93 8.73 7.91
WarpMat [3] 7 1.16 1.35 6.04 0.18 0.24 2.44 5.02 9.30 13.0 3.49 8.47 9.01
Undr+OvrSeg [1] 8 1.89 2.22 7.22 0.11 0.22 1.34 6.51 9.98 16.4 2.92 8.00 7.90
GC+SegmBorder [22] 9 1.47 1.82 7.86 0.19 0.31 2.44 4.25 5.55 10.9 4.99 5.78 8.66
AdaptOvrSegBP [19] 10 1.69 2.04 5.64 0.14 0.20 1.47 7.04 11.1 16.4 3.60 8.96 8.84
GeoSup [12] 11 1.45 1.83 7.71 0.14 0.26 1.90 6.88 13.2 16.1 2.94 8.89 8.32
PlaneFitBP 12 0.97 1.83 5.26 0.17 0.51 1.71 6.65 12.1 14.7 4.17 10.7 10.6
SymBP+occ 13 0.97 1.75 5.09 0.16 0.33 2.19 6.47 10.7 17.0 4.79 10.7 10.9
LC(RTGPU) 14 1.02 1.68 5.50 0.31 0.63 3.17 6.36 12.1 14.3 4.14 10.0 10.6
AdaptDispCalib 15 1.19 1.42 6.15 0.23 0.34 2.50 7.80 13.6 17.3 3.62 9.33 9.72
Segm+visib 16 1.30 1.57 6.92 0.79 1.06 6.76 5.00 6.54 12.3 3.72 8.62 10.2
C-Semiglobal [10] 17 2.61 3.29 9.89 0.25 0.57 3.24 5.14 11.8 13.0 2.77 8.35 8.20
. . . ... ... ... ... ... ... ... ... ... ... ... ... ...
RTGPU [23] 61 2.05 4.22 10.06 1.92 2.98 20.3 7.23 14.4 17.6 6.41 13.7 16.5
. . . ... ... ... ... ... ... ... ... ... ... ... ... ...

Table 1. Accuracy (errors NOCC, ALL, DISC) according to the methodology defined on the Middlebury evaluation site [17] for top-ranked
algorithms. In boldface, the results provided by the two considered algorithms, C-Semiglobal [10] and RTGPU [23], and their locally
consistent versions, LC(C-Semiglobal) and LC(RTGPU), proposed in this paper.

improvements brought in enforcing the local consistency of
the original disparity fields.

Current C++ implementation of our proposal, without a
specific optimization, has a running time on a standard PC
(Intel Core 2 Quad CPU at 2.49 GHz) of 15 seconds (on
Teddy and Cones). For RTGPU, the further overhead re-
quired to obtain the initial disparity field DS would be neg-
ligible while for C-Semiglobal it would be a few seconds
according to [10].

5. Conclusions

In this paper we have shown that the effectiveness of fast
stereo algorithms based on 1D disparity optimization tech-
niques can be dramatically improved by enforcing the local
consistency of disparity fields. The overall approach pro-
posed requires a few seconds on a PC and allows us to ob-
tain top-ranked results on the standard Middlebury dataset.
Moreover, thanks to its overall computational structure, our
proposal is potentially suited to fast and/or hardware imple-
mentations.
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