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Abstract

Recent ground-breaking works have shown that deep
neural networks can be trained end-to-end to regress dense
disparity maps directly from image pairs. Computer gen-
erated imagery is deployed to gather the large data corpus
required to train such networks, an additional fine-tuning
allowing to adapt the model to work well also on real and
possibly diverse environments. Yet, besides a few public
datasets such as Kitti, the ground-truth needed to adapt the
network to a new scenario is hardly available in practice.
In this paper we propose a novel unsupervised adaptation
approach that enables to fine-tune a deep learning stereo
model without any ground-truth information. We rely on
off-the-shelf stereo algorithms together with state-of-the-art
confidence measures, the latter able to ascertain upon cor-
rectness of the measurements yielded by former. Thus, we
train the network based on a novel loss-function that penal-
izes predictions disagreeing with the highly confident dis-
parities provided by the algorithm and enforces a smooth-
ness constraint. Experiments on popular datasets (KITTI
2012, KITTI 2015 and Middlebury 2014) and other chal-
lenging test images demonstrate the effectiveness of our
proposal.

1. Introduction
Availability of accurate 3D data is key to a large variety

of high-level computer vision tasks, such as autonomous
driving, 3D reconstruction and many others. Thus, sev-
eral depth estimation techniques exhibiting different de-
grees of effectiveness and deployability have been proposed
throughout the years. Among them, stereo vision proved to
be one of the most promising methodologies to infer ac-
curate depth information in both indoor and outdoor set-
tings. However, recent datasets, such as KITTI [4, 12] and
Middlebury 2014 [19], emphasized major shortcomings of
stereo in the challenging environmental conditions found in
most practical applications [11].

(a) (b)

(c) (d)
Figure 1. Effectiveness of unsupervised adaptation. (a),(b): Left
and right images belonging to a challenging stereo pair of the
dataset without ground-truth proposed in [11]. (c): Output pro-
vided by Dispnet-Corr1D [10]. (d): Output achieved after unsu-
pervised adaptation of Dispnet-Corr1D.

The widespread diffusion of deep learning in computer
vision has also affected stereo vision. In particular, Con-
volutional Neural Networks (CNNs) proved very effective
to compute matching costs between the patches of a stereo
pair [25, 2, 9], although these novel approaches still re-
quires to be plugged into well established disparity opti-
mization and refinement pipelines (e.g., [25]) to achieve
state-of-the-art accuracy. A ground-breaking forward step
is DispNet , [10], a deep architecture trained from scratch
to regress dense disparity measurements end-to-end from
image pairs, thereby dismissing all the machinery tradition-
ally deployed to optimize/refine disparities and speeding up
the computation considerably. However, due to the high
capacity of the model as well as the input consisting in im-
age pairs rather than patch pairs, this approach mandates
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a huge amount of supervised training data not available in
existing datasets (i.e. tens of thousands of stereo pairs with
ground-truth). Therefore, the network is trained leveraging
on large synthetic datasets generated by computer graphics
[10] and then fine-tuned on fewer available real data with
ground truth [4, 12] in order to improve effectiveness in the
addressed scenario [10]. Yet, the performance of a deep
stereo model may deteriorate substantially when the super-
vised data needed to perform adaptation to a new environ-
ment are not available. For example, Figure 1 (c) shows
how DispNet [10] yields gross errors on a stereo pair of a
dataset [11] lacking the ground-truth information to fine-
tune the network. Unfortunately, besides a few research
datasets, stereo pairs with ground-truth disparities are quite
rarely available as well as cumbersome and expensive to
create in any practical settings. This state of affairs may
limit deployability of deep stereo architectures significantly.

To tackle the above mentioned issue, in this paper we
propose a novel unsupervised adaptation approach that
enables to fine-tune a deep stereo network without any
ground-truth information. The first key observation to our
approach is that computer vision researchers have pursued
for decades the development of general-purpose stereo cor-
respondence algorithms that do not require any adapta-
tion to be deployed in different scenarios. The second is
that, although traditional stereo algorithms exhibit well-
known shortcomings in specific conditions (e.g., occlu-
sions, texture-less areas, photometric distortions ..), recent
state-of-the-art confidence measures, more often than not
relying on machine learning [17, 21, 22, 14, 16], can ef-
fectively highlight uncertain disparity assignments. Thus,
we propose to leverage on traditional stereo algorithms and
state-of-the-art confidence measures in order to fine-tune a
deep stereo model based on disparities provided by stan-
dard stereo algorithms that are deemed as highly reliable by
the confidence measure. Figure 1 (d) shows that our unsu-
pervised adaptation approach can improve dramatically the
output provided by DispNet [10] on a dataset lacking the
ground-truth to fine-tune the network with supervision. Our
approach deploys a loss function that, taking as target vari-
ables the disparity measurements provided by the stereo al-
gorithm, weighs the error contribution associated with each
prediction according to the estimated confidence in the cor-
responding target value. Moreover, we introduce a smooth-
ing term in the loss that penalize dissimilar predictions at
nearby spatial locations, based on the conjecture that as high
confidence target disparities may turn out sparse, enforc-
ing smoothness helps propagating the predictions from high
confidence locations towards low confidence ones. The ef-
fectiveness of our unsupervised technique is demonstrated
by experimental evaluation on KITTI datasets [4, 12] and
Middlebury 2014 [19], assessing both adaptation ability and
generalization to new data. We also report qualitative re-

sults on challenging images [11], so to highlight the need
for an effective unsupervised adaptation methodology.

2. Related Work
In the past decades several algorithms have been pro-

posed to tackle the stereo correspondence problem and, ac-
cording to [20], they can be categorized into two broad
classes: local and global methods. Both perform a subset
of the following four steps: 1) matching cost computation
2) cost aggregation 3) disparity computation/optimization
4) disparity refinement. Although local methods can be
very fast, global approaches are in general more effec-
tive. Among the latter, a good trade-off between accu-
racy and execution time is represented by the Semi Global
Matching (SGM) algorithm [6]. This method, also im-
plemented on different embedded architectures [1, 3], is
a very popular solution to disparity optimization adopted
by most top-performing algorithms on challenging datasets
[4, 12, 19], such as e.g. [25, 21]. A further boost to stereo
accuracy in challenging environments has been achieved
deploying deep learning techniques within a conventional
stereo pipeline based on SGM. In this field [25, 2, 9] in-
ferred matching costs by training a CNN to compare image
patches. In particular, Zbontar and LeCun [25] established
a common baseline for any other attempt to push forward
the state-of-the-art. A different strategy proposed in [15]
deploys deep learning to merge disparity maps of multiple
algorithms so as to obtain a more accurate estimation. Nev-
ertheless, such deep learning approaches also showed that
well-established optimization methodologies such as SGM
are still required to achieve very accurate results (e.g., [25]).

A major departure from this line of research has been
proposed by Mayer et al. [10], who tackle the disparity es-
timation problem without leveraging on any conventional
stereo technique. They achieved very accurate results on
the KITTI datasets [4, 12] by training end-to-end a deep
architecture, DispNet, so to infer dense disparity maps di-
rectly from a pair of input images. As there exist no dataset
with ground-truth large enough to train such a network, they
deployed a synthetic, yet somehow realistic, dataset specif-
ically created for this purpose. A subsequent fine-tuning on
real datasets, however, is key to substantially improve accu-
racy.

Recent trends concerning confidence measures for
stereo, reviewed and evaluated by Hu and Mordohai [7]
and more recently by Poggi et al. [18], are also rele-
vant to our work, in particular state-of-the-art approaches
leveraging on machine-learning to pursue confidence pre-
diction. Hausler et al. [5] proposed to combine multiple
confidence measures and features, as orthogonal as possi-
ble, within a random forest framework. The same strategy
was adopted by [22, 14, 16], though deploying more ef-
fective confidence measures and features. Confidence pre-



diction has also been tackled recently by deep learning ap-
proaches. Poggi and Mattoccia [17] and Seki and Pollefeys
[21] propose two different strategies to train a CNN to pre-
dict confidence measures directly from disparity maps. Re-
gardless of the adopted strategy, confidence measures have
been deployed to improve the overall accuracy of conven-
tional stereo vision pipelines as shown in [22, 14, 16, 21].
Finally, Mostegel et al. [13], propose unsupervised train-
ing of confidence measures leveraging on contradictions be-
tween multiple depth maps from different viewpoints.

Thus, though both machine/deep learning and confi-
dence measures are becoming more and more relevant to
the stereo literature, we are not aware of any previous work
concerned with deploying confidence measure to help train-
ing unsupervisedly a machine learning algorithm pursuing
disparity estimation.

3. Unsupervised Adaptation
As vouched by the experimental findings reported in

Sec. 4.2, 4.3, the main issue with large networks aimed
at dense disparity estimation from image pairs is robustness
to different deployment scenarios. In fact, when dealing
with environments quite different from those employed to
train the network, the accuracy may quickly drop and the
model would need to be adapted to the new settings in or-
der to achieve comparable performance. This step requires
a dataset with ground truth that is seldom available in prac-
tical applications.

Our proposal tackles this issue by enabling adaptation
of the network in an unsupervised fashion by leveraging on
a conventional stereo algorithm and a reliable confidence
measure. Starting from a pre-trained model, we fine tune
it to minimize a novel loss function (L) made out of two
terms: a Confidence Guided Loss (CL) and a Smoothing
Term (S), with hyper-parameter λ weighing the contribu-
tion of the latter:

L = CL + λ ∗ S (1)

Such a loss function enables to adapt the pre-trained
model to deal with any new environment by simply process-
ing a pool of stereo pairs and without requiring any ground-
truth information.

3.1. Confidence Guided Loss

Once trained on very large datasets with ground truth,
end-to-end stereo networks like DispNet can predict a dis-
parity map directly from the input stereo pair. As reported
in [10], the authors firstly trained the network on a huge
synthetic generated dataset of 25000 image pairs with valid
disparity label for each pixel, then adapted it to a differ-
ent environment through a much smaller amount of image
pairs endowed with even sparse ground truth labels (i.e. the

nearly 200 training images of KITTI2012 [4] where only
a subset of pixels have meaningful disparity values). To
account for the missing values within the images used to
fine-tune the network they simply set the loss function to 0
at such locations, given that, even if only a small portion
of output receives meaningful gradients, the system is still
able to adapt fairly well to the new scenario and hence to
ameliorate its overall accuracy.

However, despite the elegance and effectiveness of such
methodology, for most real world scenarios the adaptation
would be impossible because we can not expect availability
of enough ground truth data, even at sparse locations. On
the other hand, what we could reasonably expect is avail-
ability of stereo pairs acquired in the field. Hence, the
first contribution of our work is to fill this gap by provid-
ing a methodology to obtain disparity labels for the adapta-
tion phase using conventional stereo algorithms (e.g., AD-
CENSUS [24] or SGM [6]). Unfortunately a network like
DispNet trained on the raw output of AD-CENSUS or SGM
would, at best, learn to imitate the overall behavior of the
chosen stereo algorithm, including its intrinsic shortcom-
ings, thus leading to unsatisfactory results. However, by
taking advantage of effective confidence measures recently
proposed, like [17], we can discriminate between reliable
and unreliable disparity measurements, to select the former
and fine tune the model using such smaller and sparse set of
points as if they were ground truth labels.

Given an input stereo pair IL and IR, we denote as D̃
the disparity map predicted by the stereo network, D the
disparity map computed by a conventional stereo algorithm
and C a confidence map measuring the reliability of each
element in D, with C(p) ∈ [0, 1]∀p ∈ P , with P the set of
all spatial locations. We define the Confidence Guided Loss
(CL) as:

CL =
1

|P |
∑
p∈P

E (p) (2)

E (p) =

{
C (p) · |D̃ (p)−D (p) | if C (p) ≥ τ
0 if C (p) < τ

(3)

τ ∈ [0, 1] being a hyper-parameter of our method that
controls the sparseness and reliability of the disparity mea-
surements provided by the stereo algorithm that act as tar-
get variables in our learning process. Higher values of τ let
fewer measurements contribute to the loss but with a lower
probability of injecting wrong disparities into the process.
It is worth pointing out that should the confidence measure
behave perfectly, minimizing such loss function with an ap-
propriate τ might be taught of as to fine-tuning on sparse
ground truth data with the same amount of samples.



3.2. Smoothness Term

Although fine-tuning on sparse ground truth data, as pro-
posed in [10], does improve the disparities predicted in un-
seen scenarios, it may still be regarded as an approxima-
tion of the ideal optimization process that would leverage
on dense labels. Therefore, to compensate for the sparsity
of target measurements, we introduce in the loss function an
additional smoothness term S that tends to penalize diverse
predictions at nearby spatial locations.

Given a distance function D (p, q) between two spatial
locations p, q, we denote as Np the set of neighbours of
spatial location p: Np = {q|D (p, q) < δ}. We compute
the average absolute difference between the disparity pre-
dicted at p and those predicted at each q ∈ Np:

E (p) =
1

|Np|
∑
q∈Np

|D̃(q)− D̃(p)| (4)

The smoothing term is obtained by averaging E (p)
across all spatial locations:

S =
1

|P |
∑
p∈P

E (p) (5)

The distance function, D, as well as the radius of the
neighborhood, δ, are hyper-parameters of the proposed
smoothing term. It is worth observing that, optimized alone,
such term would produce a uniform disparity map as output.
However, when carefully weighted in conjunction with CL,
it helps spreading the information associated with sparse
target measurements towards the other spatial locations.

4. Experimental Results
To validate our proposal we choose DispNet-Corr1D

[10], from now on referred to as DispNet, as network archi-
tecture for end-to-end disparity regression, AD-CENSUS
[24] and SGM [6] as off-the-shelf stereo algorithms and
CCCN [17] as confidence estimator. The choice of the con-
fidence estimator has been driven by its top performance
and broad applicability, the latter due to the method requir-
ing only the disparity map to estimate the confidence. As for
Dispnet, we modified the original authors code to incorpo-
rate our novel loss formulation and fine tuned the network
starting from the publicly available weights obtained after
training on synthetic data only. For CCCN we used the orig-
inal implementation as well as the provided weights without
any retraining or fine tuning. Lastly, we used a custom im-
plementation of SGM and AD-CENSUS based on the orig-
inal papers. We will firstly introduce the procedure used to
properly tune the hyper-parameters of our learning process,
then we will show that our method not only allows to ef-
fectively fine-tune the chosen disparity regression network
without any labeled data but also does improve the general-
ization capability of the model across similar domains.
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Figure 2. Percentage of points with confidence> τ on KITTI 2012
images using AD-CENSUS as stereo algorithm and CCCN as con-
fidence measure. The blue curve shows that the higher is τ the
lower is the number of points used in our learning process. The or-
ange curve reports the percentage of correct points between those
selected by the confidence measure that belong also to the avail-
able sparse ground truth (less than 30% of the total points, black
horizontal line), which is obtained by comparing the disparities
estimated at the selected points to the ground truth disparities.

4.1. Learning Process

To find optimal values for the hyper-parameters of our
learning machinery, we choose to rely on the commonly
used KITTI datasets [4, 12]. In particular, to get insights on
the training and generalization performance of our method,
we have used the images from KITTI 2012 as training set
and those from KITTI 2015 as test set. For all our exper-
iments we initialize DispNet according to the weights ob-
tained after 1200000 training steps on synthetic data and
publicly released by the authors. In the experiments dealing
with hyper-parameters tuning, we have used AD-CENSUS
[24] as stereo algorithm to compute the disparity maps that
are then validated by the chosen confidence measure [17] in
order to sift-out the actual target variables.

For these experiments, to obtain useful insights in an ac-
ceptable training time, we carried out just 10000 fine tuning
steps for each test configuration with batch size equal to 4
on the 194 KITTI 2012 images(∼200 epochs) and feeding
the network with random crops of the original images of
size 768 × 384. To increase the variety of the training set,
we perform random data augmentation (color, brightness
and contrast transformations) as done by the authors of [10].
We use ADAM [8] as optimizer with an initial learning rate
equal to 0.0001 and an exponential decay every 2000 step
with γ = 0.5.

The first parameter that needs to be carefully tuned is
τ , which allows for filtering out wrong disparity assign-
ments according to the scores provided by confidence mea-
sure. Figure 2 shows that even for high values of τ we can
get disparity maps denser than the available ground truth
data for KITTI 2012. Moreover, cross comparing such
points with the available sparse ground truth, we can ob-



Figure 3. Spatial distribution of training samples on stereo pair 000073 from KITTI 2015. Top row: reference image, disparity map yielded
by the AD-CENSUS algorithm and corresponding confidence map obtained by CCNN [17]. Bottom row, from left to right: three colormaps
obtained by thresholding the confidence map with τ equal to 0, 0.5 and 0.99, respectively. The colormaps depict in green the points above
threshold and in blue their intersection with the available ground-truth points.

serve that, for quite high τ values (i.e. > 0.9), nearly 100%
of the points selected by our method that appear at avail-
able ground truth locations carry correct disparities. Al-
though we cannot assess upon the correctness of the points
selected by our method that do not coincide with available
ground truth locations, there seems to be no reason to be-
lieve that the confidence measure would behave much dif-
ferently therein. Therefore, Figure 2 seems to support the
intuition that high confidence disparities are very likely cor-
rect and hence may effectively act as ”surrogate” ground
truth data within our unsupervised learning process. More-
over, compared to the sparse ground truth data available in
the KITTI datasets, a favourable property of our selected
disparities is the larger spread across the whole image. This
enables our method to look at portions of the scene seldom
included in ground truth data. From Figure 3 we can notice
that for high values of τ , even though the density of our dis-
parity map is similar (or slightly lower) with respect to the
ground truth data, we gather samples more spread across all
the image. For example, even with τ = 0.99, the top of the
trees on the left and one of the farthest car in the scene are
always visible in our unsupervised disparity map but not in-
cluded in the available ground truth data. We will show in
section 4.3 that this property leads to better generalization
performance.

Given this preliminary observations, we tried different
values for τ and report the training and generalization er-
ror in Figure 4. We observe a perfectly smooth descend-
ing behavior of the Training and Generalization error (per-
centage of wrongly predicted pixel) with increasing value
of τ . Given this outcome we can conclude that the higher
the value of τ the better the performance of the network.
Thus, we set τ = 0.99. Such value selects, on this train-
ing set, 22.07% of available pixels (slightly less than the
available ground truth points) with an accuracy of the pix-
els for which we have a ground truth disparity annotation
equal to 99.65%. Once set τ , we evaluate how a proper
tuning of the smoothing term of our loss function enables
to improve the overall performance. For these experiments
we choose as distance functionD (p, q) the L1 distance and
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Figure 4. Performance of the network after 10000 steps of fine-
tuning for different values of τ . We report as Training Error the
percentage of pixel with disparity mismatch> 3 on the training set
(KITTI 2012) and as Generalization Error the same metric com-
puted on unseen data from KITTI 2015.

δ = 1. Keeping the same set-up as used to tune τ (Fig-
ure 4), we perform experiments on the KITTI 2012 dataset
with different values of λ ∈ [0, 1], the results reported in
Figure 5. Looking at the training error it is clear how our
regularization term can improve the performance of the net-
work. However the value of λ must be kept < 0.6 in or-
der to not over-smooth predictions. More importantly, even
the generalization performance of the network is influenced
by the magnitude of λ, with the lowest generalization error
obtained using λ = 0.1. WE believe that the explanation
for this behavior is that the network compensates for the
missing target measurements by creating a useful training
signal thanks to the smoothing factor that propagates infor-
mation from existing target measurements to nearby loca-
tions. However, the value of λ must be kept low so to not
overcome the contribution of the confidence guided loss.

From the careful tuning outlined so far, we found that
the best configuration for our unsupervised framework is
τ = 0.99 and λ = 0.1 using D (p, q) and δ = 1.

4.2. Adaptation

Given the best configuration of hyper-parameters, we
evaluate the effectiveness of our unsupervised adaptation
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Figure 5. Performance of the network after 10000 steps of fine-
tuning for different values of λ and with τ = 0.99.

Stereo KITTI 2015 Middlebury 2014
algorithm bad 3(%) avg bad 1(%) avg

AD-CENSUS [24] 35.41 20.11 30.66 10.29
SGM [6] 13.68 6.14 20.71 5.73
DispNet 7.46 1.27 32.82 2.74

DispNet K12-GT 4.58 1.15 40.21 2.94
DispNet CENSUS 4.02 0.76 25.38 2.47

DispNet SGM 4.21 0.85 22.91 2.66
Table 1. Adaptation results on the KITTI 2015 training dataset.
DispNet: no fine-tuning; DispNet K12-GT: supervised fine-tuning
on an annotated and quite similar dataset (KITTI 2012); DispNet
CENSUS: unsupervised adaptation using the AD-CENSUS stereo
algorithm; DispNet SGM: unsupervised adaptation using the SGM
stereo algorithm.

methodology when dealing with environments never seen
before. To assess performance, on one hand we assume the
KITTI 2012 training dataset as a known scenario on which
ground-truth data to fine-tune DispNet are available . On the
other hand, we assume KITTI 2015 and Middlebury 2014
as novel environments with no ground-truth available for
fine-tuning. Thus, we perform unsupervised adaptation on
KITTI 2015 and Middlebury 2014 and compare accuracy
with respect to both the original DispNet architecture (i.e.,
trained on synthetic data only) as well as to DispNet fine-
tuned on KITTI 2012 by the available ground truth. Fol-
lowing this protocol, we can prove that our unsupervised
adaptation improves significantly the accuracy of the orig-
inal network. i.e. that unsupervised fine-tuning is feasible
and works well, and that, in absence of ground-truth data,
unsupervised fine-tuning on the addressed scenario is more
effective than transferring a supervised fine-tuning from an-
other annotated (and quite similar) environment1. To assess
the performance of our proposal with different stereo al-
gorithms, in these experiments we use AD-CENSUS and
Semi-Global Matching (SGM), the latter leveraging as data
term the final cost computed by AD-CENSUS and with

1This protocol is also compliant to the KITTI submission rules, which
forbid to process the test data in any manner before submitting results.

smoothing penalties P1 = 0.2 and P2 = 0.5, being the
matching costs between 0 and 1.

Table 1 reports the error rate (i.e., the percentage of pix-
els having an error larger than θ) and the average disparity
error on the entire KITTI 2015 (θ = 3) and Middlebury 2014
(θ = 1) training sets. For both datasets we use the standard
evaluation protocol; for Middlebury we resized the stereo
pairs to quarter resolution to have a disparity range simi-
lar to the KITTI datasets. We highlight how, regardless of
the chosen off-the-shelf stereo algorithm being either AD-
CENSUS or SGM, our unsupervised adaptation approach
achieves higher accuracy with respect to the original Disp-
Net architecture as well as to DispNet fine-tuned supervis-
edly on KITTI 2012 on both datasets and according to both
metrics. Table 1 reports also on the first two rows the accu-
racy of the two stereo algorithms deployed for adaptation:
their very high error rates demonstrate how the proposed
confidence guided loss and smoothness term can handle ef-
fectively the high number of wrong assignments within the
disparity maps yielded by the stereo algorithms that provide
the ”raw” target variables to the learning process.

As for the results on KITTI 2015, it is worth highlighting
that our approach is able to outperform DispNet fine-tuned
through the ground-truth data of a very similar dataset (i.e.,
KITTI 2012). Thus, despite the high similarity between the
two datasets in terms of image content, which renders fine-
tuning on KITTI 2012 beneficial to DispNet, as vouched by
the nearly 3% decrease of the error rate and the reduced av-
erage disparity error, our proposed unsupervised adaptation
turns out more effective obtaining an even higher accuracy.
Moreover, we point out how our unsupervised adaptation
method is effective with both the considered off-the-shelf
stereo algorithms, which are characterized by quite differ-
ent error rates and behaviors. This is particularly relevant to
AD-CENSUS, whose average error rate is quite high (i.e.,
on average, more than 35% of wrong pixels in each map).

This experiment shows that our methodology can be de-
ployed to effectively fine-tune a deep stereo network with-
out the need of ground truth disparities. Moreover our con-
fidence guided loss proves to be able to drastically improve
the performance of a deep stereo system even if the raw tar-
get values used for the unsupervised tuning are very noisy,
such as it the case of the disparity map computed by AD-
CENSUS. Interestingly, DispNet adapted from such noisy
data yields more accurate disparity maps with respect to un-
dergoing a fine tuned based on ground truth data from a dif-
ferent though similar scenario. In a further experiment we
included in our usupervised fine-tuning of DispNet based
on AD-CENSUS only the stereo pairs of the KITTI 2015
training dataset with available ground-truth, i.e. given the
scene labeled as ”000000”, we process unspervisedly only
the ”000000 10” stereo pairs rather than also those labeled
as ”000000 11”, so to deploy a similar number of images



GT AD-CENSUS (24.89) SGM (18.08) DispNet K12-GT (29.55) DispNet SGM (15.12)
Figure 6. Qualitative result on the PianoL image from the Middlebury 14 dataset with average error reported between bracket. From left to
right, ground truth disparity map (white points are undefined) and disparity maps obtained with different stereo algorithms.

Stereo KITTI 2012 KITTI 2015
algorithm bad 3(%) avg bad 3(%) avg
DispNet 6.60 1.1399 7.46 1.27

DispNet K12-GT 2.89 0.93 4.58 1.15
DispNet CENSUS 4.29 0.79 4.34 0.87

DispNet SGM 4.12 0.80 4.35 0.88
Table 2. Results on the KITTI 2012 and KITTI 2015 training
datasets. DispNet: no fine-tuning; DispNet K12-GT: supervised
fine-tuning on the ground-truth from KITTI 2012; DispNet CEN-
SUS: unsupervised adaptation on KITTI 2012 using the AD-
CENSUS stereo algorithm; DispNet SGM: unsupervised adapta-
tion on KITTI 2012 using the SGM stereo algorithm .

as DispNet fine-tuned on Kitti 2012. In these settings we
observe only a modest increase of the error rate and average
disparity error of about 0.09% and 0.04% respectively.

As for the evaluation on Middlebury 2014, we first high-
light how fine-tuning DispNet on Kitti 2012 yields a large
increase of the error rate with respect to the model trained
on synthetic data only and does not significantly amelio-
rates the average disparity error (somehow similarly to Kitti
2015). This shows that, when fine-tuned on samples de-
picting very different environments (such as KITTI 2012 in
this case), the network can reduce the magnitude of mis-
matching disparities but cannot increase the overall num-
ber of correct pixels (indeed, on Middlebury such amount
is vastly decreased). Conversely, adapting unsupervisedly
DispNet with our technique yields a substantial reduction
of both the average disparity error as well as of the error
rate, in particular by more than 11% when deploying SGM
as the stereo algorithm. Overall, these results support the
effectiveness of the proposed unsupervised adaptation ap-
proach even on a challenging and very varied environment
such as the Middlebury dataset. In Figure 6 we show quali-
tative results on this dataset.

4.3. Generalization

Once assessed the superiority of unsupervised adapta-
tion with respect to fine-tuning by ground-truth data from
different datasets, we also inquire about the generalization
capability of our technique when dealing with the same
data as deployed by traditional fine-tuning based on ground-
truth. In particular, we perform both traditional fine-tuning
and unsupervised adaptation on the KITTI 2012 training

AD-CENSUS SGM
τ gt ∩ τ (%) bad 3 (%) gt ∩ τ (%) bad 3 (%)

0.00 100.00 38.64 100.00 16.53
0.50 61.89 7.83 87.87 6.58
0.80 53.16 2.90 83.64 4.37
0.90 48.71 1.70 80.58 3.40
0.95 44.49 1.06 77.48 2.67
0.99 32.15 0.35 68.01 1.40

Table 3. Intersection between confident points and ground-truth
data as function of the threshold value τ and its error rate, for both
AD-Census [24] and SGM [6] algorithms.

dataset, then we evaluate the performance of the networks
also on the KITTI 2015 training dataset in order to assess
generalization performance 2. We perform unsupervised
adaptation on the frames with available ground-truth only
(i.e., given 000000 scene and its stereo pairs labeled as
” 10” and ” 11”, we obtain disparity and confidence only
for the first pair), in order to make use of the same number
of stereo pairs in the different tuning procedures for a fair
comparison. Table 2 reports error rates (i.e., the percentage
of pixels having a disparity error larger than 3) and average
disparity error on both KITTI 2012 and KITTI 2015 train-
ing datasets. As we could expect, the network fine-tuned on
ground-truth data (DispNet K12-GT) achieves a lower error
rate with respect to the networks adapted unspervisedly. On
the other hand, the unsupervised technique yields a lower
average disparity error. To test the generalization property,
we focus on results obtained on the KITTI 2015 dataset.
Our unsupervised adaptation enables the network to outper-
form that fine-tuned supervisedly regarding both the error
rate and the average disparity error, whatever stereo algo-
rithm is deployed during the training phase.

These results can be explained by recalling the consider-
ation already discussed in Section 4. As shown in Figure 3,
the pixels with a confidence higher than τ are more widely
spread throughout the image than the available ground-truth
pixels. Table 3 reports the intersection between confident
(i.e., having a confidence value higher than the threshold τ )
and ground-truth pixels as percentage of the total amount of
available ground-truth samples; as expected, increasing τ

2We follow this protocol to avoid multiple submission to the KITTI
benchmark.



(a) (b) (c) (d) (e)
Figure 7. Unsupervised adaptation on action. (a) reference image, (b) disparity map according to census algorithm [24], (c) disparity map
filtered by CCNN [17], (d) outcome of DispNet before adaptation, (e) final disparity map, by adapted DispNet.

such intersection gets smaller. In particular, with a thresh-
old value of 0.99 and the AD-Census algorithm the subset
of pixels processed during adaptation contains only 32%
of the ground-truth data used by the common fine-tuning
technique, while with the same threshold and the SGM al-
gorithm this percentage rises to 68%. This means that all
the remaining samples contributing to adaptation (i.e. 68
and 32% for, respectively, AD-CENSUS and SGM) encode
patterns unseen using a traditional fine-tuning procedure.
Thus, the network can learn from more varied and generic
samples with respect to ground-truth which is, among other
things, all contained in the lower part of the images. More-
over, the Table also reports the average error rate (bad 3)
on the intersection, about 1% for both algorithms, stressing
how the disparities computed on this subset of pixel are al-
most equivalent to ground-truth data. Assuming this prop-
erty to be true for the rest of the pixels having confidence
higher than τ , the unsupervised adaptation can learn many
behaviors not encoded by the pixels providing the ground-
truth, which is conducive to better generalization.

4.4. Qualitative Results on Challenging Sequences

To further test the effectiveness of the proposed ap-
proach, we adapt unsupervisedly DispNet on a set of chal-
lenging stereo sequences acquired in bad weather condi-
tions [11]. Peculiar to these sequences is the unavailability
of ground-truth data, making them a well-fitting case study
for our proposal. Figure 7 reports some notable examples,
on which the adaptation technique prove to solve most of
the issues related to illumination and weather conditions.

Additional examples are provided in the supplementary ma-
terial.

5. Conclusion and Future Work
We have demonstrated that it is possible to adapt a deep

learning stereo network to a brand new environment with-
out using ground-truth disparity labels. The implementa-
tion code will be made available3. The experimental eval-
uation proved that our proposal can better generalize when
moving to similar contexts with respect to fine-tuning tech-
niques based on sparse ground-truth data. Based on these
findings, we plan to investigate on whether and how our
approach may be deployed to train from scratch in a com-
pletely unsupervised manner a deep stereo network. Pur-
posely, we may leverage jointly on different and somehow
complementary stereo algorithms [23, 15] as raw target dis-
parities to be validated by the confidence estimator. Another
line of further research concerns the development of a real-
time self-adaptive stereo system, which would be able to
adapt autonomously and on-line to an unseen environment.
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