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Abstract. Confidence measures for stereo gained popularity in recent
years due to their improved capability to detect outliers and the in-
creasing number of applications exploiting these cues. In this field, con-
volutional neural networks achieved top-performance compared to other
known techniques in the literature by processing local information to tell
disparity assignments from outliers. Despite this outstanding achieve-
ments, all approaches rely on clues extracted with small receptive fields
thus ignoring most of the overall image content. Therefore, in this pa-
per, we propose to exploit nearby and farther clues available from image
and disparity domains to obtain a more accurate confidence estimation.
While local information is very effective for detecting high frequency pat-
terns, it lacks insights from farther regions in the scene. On the other
hand, enlarging the receptive field allows to include clues from farther
regions but produces smoother uncertainty estimation, not particularly
accurate when dealing with high frequency patterns. For these reasons,
we propose in this paper a multi-stage cascaded network to combine the
best of the two worlds. Extensive experiments on three datasets using
three popular stereo algorithms prove that the proposed framework out-
performs state-of-the-art confidence estimation techniques.

Keywords: confidence measures, stereo matching, deep learning

1 Introduction

Stereo is a popular technique to infer the 3D structure of a scene sensed by two
cameras and for this reason deployed in several computer vision applications.
A stereo setup is typically made of two synchronized cameras and establishing
correspondences between homologous points allows inferring depth through sim-
ple triangulation. Consequently, stereo literature is extremely vast since it dates
back to the ’60s and since then has been very popular. Despite this longstanding
research activity, due to its ill-posed nature, algorithms aimed at finding stereo
correspondences may lead to inaccurate results. In particular, when dealing with
occlusions, transparent or reflecting surfaces, texture-less regions. Thus, on the
one hand, we need accurate depth estimation algorithms. On the other hand,
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Fig. 1. Example of confidence estimation. (a) Reference image from KITTI 2015
dataset [7], (b) disparity map obtained with MC-CNN [8], (c) confidence estimated
with a local approach (CCNN [2]) and (d) the proposed local-global framework, high-
lighting regions on which the latter method provides more reliable predictions (red
bounding boxes).

given a depth or disparity map, we need an accurate methodology to infer the de-
gree of reliability of each point. This task is referred to as confidence estimation
and is of paramount importance when dealing with depth data.

Among the many confidence estimators proposed in the literature, recently
reviewed and evaluated by Poggi et al. in [1], methods using as input cue in-
formation extracted from the disparity domain only [2,3,4] proved to be par-
ticularly effective. Compared to approaches relying on cues extracted from the
cost volume or other strategies known in the literature, these methods currently
represent state-of-the-art. Another notable advantage of methods working in the
disparity domain, and in particular [2,4], is their ability to cope with depth data
inferred by stereo systems not exposing to the user the cost volume, such as
those based on closed source software or commercial stereo cameras. Regardless
of this fact, machine learning deeply impacted confidence estimation starting
from the seminal work of Haeusler et al. [5] aimed at inferring a confidence mea-
sure combining conventional confidence measure within a random forest frame-
work. Later, other works successfully followed this strategy and, more recently,
methods based on Convolutional Neural Networks (CNNs) achieved outstanding
results [1] by inferring a confidence score for each pixel of a disparity map feeding
to the deep-network a patch centered on it. In contrast to CNN-based method [3]
and approaches based on random-forest, CCNN [2] accomplishes this task with-
out relying on any hand-crafted feature defined beforehand. Currently, CCNN
represents state-of-the-art for confidence estimation as recently highlighted in
[1]. This strategy was extended in [6] by feeding to the CNN also the input
reference image with promising results deploying, however, a larger amount of
training samples.

Regardless of the strategy adopted, all these methods estimate confidence
with a relatively small receptive field intrinsic in their local patch-based nature.
Increasing such parameter in these methods does not enable significant improve-
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ments and may also lead to poor results. Thus, state-of-the-art methods do not
take advantage of the whole image and disparity content. Although this strat-
egy is undoubtedly valid, on the other hand, it seems clear that by looking at
the whole reference image and disparity map matters for uncertainty estimation.
This fact can be readily perceived by observing Figure 1 in the highlighted areas.

In particular, considering more global reasoning on the whole image and
disparity content can improve the prediction for disparity values more unlikely
to occur (e.g., objects extremely close to the camera), at the cost of a smoother
prediction. This task can be undertaken by architectures with a large receptive
field such as encoder-decoder models thus less accurate in the presence of high-
frequency noise (e.g., outliers on the output of stereo algorithms such as AD-
CENSUS or other matching functions). On the other hand, networks working
on patches detect very well this kind of outliers but they are not able to capture
farther information.

Therefore, in this paper, we propose to overcome this limitation by combining
the best of the two worlds (i.e., networks based on small and large receptive
fields). We do this by deploying a CNN-based architecture able to extract nearby
and far-sighted cues, in the RGB and disparity domains, and to merge them
to obtain a more accurate confidence estimation. By training a multi-modal
cascaded architecture we first obtain two confidence predictions by reasoning
respectively on local and farther cues, then we further elaborate on them to
obtain a final, more accurate prediction. Figure 1 shows qualitatively how this
strategy enables to estimate more reliable confidence scores.

To the best of our knowledge, our proposal is the first one enabling to i)
exploit more global context for learning confidence predictions and ii) combine
this novel technique with local approaches to design an effective local-global con-
fidence measure. From now on, we will define as global, with abuse of language, a
strategy going beyond traditional neighboring boundaries usually adopted in the
field of confidence estimation. We extensively evaluate the proposed framework
on three popular datasets, KITTI 2012 [9], KITTI 2015 [7] and Middlebury v3
[10] using three popular algorithms used in this field, respectively, AD-CENSUS
[11], MC-CNN-fst matching cost [8] and SGM [12]. Such exhaustive evaluation
clearly highlights that our proposal is state-of-the-art.

2 Related work

In this section, we review the literature concerning confidence measures, their
applications and the most recent advances in stereo matching using deep learning
being all these fields relevant to our proposal.

Confidence measures for stereo. Confidence measures have been exten-
sively reviewed by Hu and Mordohai [13] and by Poggi et al. [1] more recently
including methods based on machine-learning. While the first review evaluated
confidence measures with standard local algorithm using sum of absolute dif-
ferences (SAD) and normalized cross correlation (NCC) as matching costs on
the Middlebury 2002 dataset [14], the second review considers recent state-of-



4 F. Tosi, M. Poggi, A. Benincasa, S. Mattoccia

the-art confidence measures and evaluates them with three popular algorithms
(AD-CENSUS [11], MC-CNN [8] and SGM [12]) on KITTI 2012 [9], KITTI 2015
[7] and Middlebury v3 [10] the standard datasets in this and other related fields.
Both works follow the evaluation protocol defined in [13], consisting in Area
Under the Curve (AUC) analysis from ROC curves. As reported in [1], machine
learning enables to obtain more accurate confidence estimation compared to con-
ventional strategies. Starting from the seminal work of Hausler et al. [5], other
approaches fed hand-crafted features to a random forest classifier [5,15,16,4].
Recently, more accurate confidence estimators were obtained by leveraging on
CNNs. In CCNN [2] Poggi and Mattoccia trained the network with raw disparity
maps of the reference image while in PBCP [3] Seki and Pollefeys trained the
network with pre-processed disparity maps concerned with reference and target
images. According to the extensive evaluation reported in [1] both latter meth-
ods, and in particular CCNN, outperform any other known confidence measure.
Poggi and Mattoccia [17] also proposed an effective strategy to improve confi-
dence measures by exploiting local consistency. In [18] was proposed a method
to improve random forest-based approaches for confidence fusion [15,16,4] by
using a CNN. Fu et al. [6] extended CCNN [2] by adding the raw RGB image as
input to the CCNN network. This strategy improves the final prediction when
training on a much larger amount of training data (94 stereo pairs vs 20 im-
ages typically deployed with CCNN as in [1]). Some works looked deeper into
the learning process of confidence measures, by studying features augmentation
[19] or by designing self-supervised techniques to train them on static video se-
quences [20] or stereo pairs [21]. The latter technique proved to be effective even
with CNN-based confidence measure CCNN. Finally, in [22] was proposed an
evaluation of conventional confidence measures and their simplifications when
targeting embedded systems.
Applications of confidence measures. While traditionally confidence mea-
sures were used to filter out outliers from disparity maps, some higher-level ap-
plications leveraging on them for other purposes have been deployed in the last
years. Spyropoulos and Mordohai [15] used estimated confidence to detect very
reliable disparity assignments (i.e., Ground Control Points) and setting for them
ideal cost curves to improve the results of a further global optimization step.
Park and Yoon [16] proposed a cost modulation function based on confidence
applied to intermediate DSI (Disparity Space Image) before SGM optimization,
Poggi and Mattoccia [4] modified the SGM pipeline to reduce the streaking
effects along each scanline by penalizing low confidence hypothesis. Seki and
Pollefeys [3] acted on P1 and P2 penalties of SGM tuning them according to the
estimated confidence. In addition to these approaches, acting inside stereo al-
gorithms to improve their final output, other applications concern sensor fusion
[23] and disparity map fusion [24]. Shaked and Wolf [25] embedded confidence es-
timation inside a deep model stereo matching. Finally, confidence measures were
also deployed for unsupervised adaptation of deep models for stereo matching
[26] or unsupervised training of machine learning based measures [21], thus not
requiring difficult to source disparity ground-truth labels.
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Deep learning for stereo matching. The very first attempt to use deep
learning in stereo matching was proposed in the seminal work of Zbontar and
LeCun [27] aimed at inferring matching cost through a CNN by processing im-
ages patches. This technique, known as MC-CNN, is now deployed by many
stereo pipelines as reported on the KITTI and Middlebury v3 benchmarks. By
working on small image patches only (i.e., 9×9), deep learning based confidence
measures [2,3,6] are affine to this approach, being all these methods based on
small receptive fields. Recent advances in stereo consist of deploying deep net-
works embedding all steps of traditional pipelines. These models are typically
characterized by encoder-decoder architectures, enabling an extremely large re-
ceptive field and thus able to incorporate most of the global image content. The
first, seminal work in this direction is DispNet by Mayer et al. [28], followed
more recently by GC-Net [29] and CLR [30].

Thus, although deep learning confidence measures working on image patches
have been successfully proposed [2,3,6], the literature lacks global approaches for
this task. Therefore, inspired by successful attempts based on encoder-decoder
architectures for disparity estimation [28,30,29] and local approaches for confi-
dence estimation, in this paper we combine both strategies to achieve a more
robust confidence measure by exploiting cues inferred from local and global con-
texts.

3 Method overview

In this section, we introduce our local-global framework for confidence estima-
tion. Driven by the recent success of confidence measures obtained by processing
cues in the disparity domain only, and in particular those based on deep learn-
ing [2,3,6], we look beyond the small local neighborhood taken into account for
each pixel by these methods and we analyze global context from both RGB and
disparity domains to obtain a more consistent confidence estimation. Being local
and global approaches characterized by complementary strengths, respectively
the formers are very effective at detecting high-frequency patterns while the lat-
ter can incorporate much more cues from the surrounding pixels, we argued that
combining them can further improve confidence estimation by overcoming the
specific limitations of the single approaches. To do so, we will deploy two main
architectures, respectively in charge of process local and global context. Then,
the output of these two networks is combined to obtain the final prediction. In
Section 3.1 we describe the local network, for which we choose state-of-the-art
CCNN measure [2] and its extensions proposed in [6]. In Section 3.2 we intro-
duce a novel architecture for global confidence estimation referred to as ConfNet,
inspired by works concerning end-to-end stereo matching [28]. Finally, in Section
3.3 we outline our overall local-global framework combining cues generated by
local and global approaches.



6 F. Tosi, M. Poggi, A. Benincasa, S. Mattoccia

(a) (b) (c)

3 * 3 Conv + ReLU

1 * 1 Conv + ReLU

Fig. 2. Local architectures, respectively (a) CCNN [2], (B) EFN [6] and (c) LFN [6].
The networks uses 3 × 3 (blue) and 1 × 1 convolutional layers, all followed by ReLUs
except the last one.

3.1 Local approaches

With local approaches, we refer to methodologies aimed at estimating the confi-
dence score for a single pixel by looking at nearby pixels laying on a small local
neighborhood. PBCP [3], CCNN [2] and multi-modal approaches [6] belongs to
this category. We use the two latter techniques in our framework, depicted in
Figure 2, because of the superior outliers detection performance achieved by
the first [1] further improved, in some circumstances, by multi-modal networks
[6]. Another reason to use CCNN-based networks is that both can be computed
without requiring the right disparity map, required by PBCP [3], not always
available in some circumstances as previously highlighted.

CCNN. This confidence measure is obtained by processing the disparity map
through a shallow network, made of 4 convolutional layers with 3 × 3 kernels
producing 64 features map at each level, followed by 2 convolutional layers with
1× 1 kernels producing 100 features map and a final 1× 1 convolution followed
by Sigmoid activation to obtain confidence scores in [0, 1] interval. All the other
layers are followed by ReLU non-linearities. The first 4 layers do not apply any
explicit padding to its input, thus reducing input size by 2 pixels on both height
and width (i.e., 1 pixel on each side). This makes the single pixel confidence
prediction bound to a 9 × 9 local patch, the receptive field of the network,
centered on it. The fully convolutional nature of this model allows for training
on image patches and then performs a single forward of a full resolution disparity
map if properly padded (i.e., applying 4 pixel padding on each side).

Multi-modal networks. In [6] the authors propose to improve CCNN [2] by
feeding to the network additional information from the RGB reference image. To
this aim Fu et al. propose two strategies, respectively, the Early Fusion Network
(EFN) and the Late Fusion Network (LFN). In the EFN, RGB and disparity
patches are concatenated to form a 4-channel input, processed by a shallow net-
work with the same structure of CCNN, but different number of channels at each
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Fig. 3. ConfNet architecture. Encoding blocks (light blue) are made by 3 × 3 con-
volutions followed by batch normalization, ReLU and max-pooling. Decoding blocks
(yellow) contains 3× 3 deconvolutions and 3× 3 convolutions to reduce grid artifacts.

layer (i.e., 112 for 3× 3 and 384 for 1× 1 convolutions). In the LFN, the infor-
mation from the two domain is processed into two different streams, obtained
by building two towers made of four 3× 3 convolutional kernels without sharing
the weights between them, in order to learn domain specific features representa-
tions. The outputs of the two towers are then concatenated and processed by the
final 1× 1 convolutions. Final outputs pass through a Sigmoid activation as for
CCNN. The number of channels are the same as for EFN model. Both models
have been trained and compared with CCNN, proving to perform better when
trained with a much larger amount of samples compared to the amount (i.e., 94
stereo pairs versus 20) typically deployed in this field [1]. The receptive field of
both networks is the same of CCNN (9× 9).

3.2 Proposed global approach

In this section, we describe the network architecture designed to infer confidence
prediction by looking at the whole image and disparity content.

ConfNet. Inspired by recent works in stereo matching [28,30,29], we design an
encoder/decoder architecture enabling a large receptive field and at the same
time maintaining the same input dimensions for the output confidence map.
Figure 3 shows an overview of the ConfNet architecture. After concatenating
features computed by 3×3 convolutional layers from both RGB reference image
and disparity map, they are forwarded to the first part of the network, made of
4 encoding blocks. Each of them is made of a 3 × 3 convolutional layer ReLU
activations and a 2× 2 max-pooling used to decimate the input dimension and
thus to increase the receptive field. More precisely, after the fourth block the
original resolution is reduced by a factor 16, making a 3×3 convolution actually
processing a 48× 48 receptive field of the initial input. The number of channels
of the convolutional layers in different blocks are respectively 64, 128, 256 and
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Fig. 4. LGC-net architecture. Given the input reference image and its disparity map,
they are forwarded to both local (CCNN or LFN, in orange) and global (ConfNet,
green) networks, whose outputs and disparity are processed by 3 independent towers,
concatenated to finally infer the output confidence map.

512, doubling after each max-pooling operator. Then, four decoding block fol-
low in order to restore the original resolution of the input before obtaining the
final confidence map. Each block uses a 3 × 3 deconvolutional layer with stride
2, followed by a 3 × 3 convolutional layer processing deconvolutional outputs
concatenated with features taken from the encoding part at the same resolution.
This reduces grid artifacts introduced by deconvolutional layers as suggested in
[28], as well as enables to keep fine details present before down-sampling in the
encoding part and missing after up-sampling from lower resolutions. The num-
ber of channels in each block for both deconvolutional and convolutional layers
are respectively 256, 128, 64 and 32. A final 3× 3 convolutional layer produces
the final, full resolution confidence map followed by a Sigmoid operator to ob-
tain normalized confidence values. The much larger receptive field enables to
include much more information when computing per-pixel scores, but also acts
as a regularizer yielding smoother confidence estimations and this leads to poor
accuracy when dealing with high frequency patterns.

3.3 Local-global approach

To effectively combine both local and global cues, we introduce a final module
acting in cascaded manner after the first two networks by processing their out-
puts and the initial disparity map. The module in charge of combining these cues
is made of three towers processing respectively the local map, the global map
and the disparity map. Weights are not shared between towers to extract distinct
features from the three domains. Each tower is made of four convolutional layers
with kernels 3× 3 and 64 channels, their output are then concatenated and for-
warded to two final 1× 1 convolutional layers producing 100 features map each
and a final 1× 1 convolution in charge of the final confidence estimation, passed
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through a Sigmoid layer. Figure 4 describes the overall framework, referred to
as Local Global Confidence Network (LGC-Net).

4 Implementation details and training protocol

We implemented our models using the TensorFlow framework. In particular, we
deployed CCNN, EFN and LFN using the same configuration proposed in [2]:
64 and 100 channels respectively for 3 × 3 and 1 × 1 convolution, for which we
report extensive experimental results in the next section. We also evaluated 112
and 384 channels versions, we report these experiments in the supplementary
material. While the entire framework is fully differentiable from the input to the
output, thus trainable in end-to-end manner, we first train the local and global
networks separately, then we train the cascaded module. As already highlighted
in [30], training cascaded models in end-to-end fashion may lead the network
to converge at a local minimum, while a reasoned training of each module may
enable better overall performance.
Local networks training schedule. Following the guidelines provided in [1],
we extract 9× 9 image patches from the first 20 stereo pairs in the KITTI 2012
training dataset [9] centered on pixels with available ground-truth disparity used
to obtain confidence ground-truths (more details in Section 5.1), resulting into
about 2.7 million samples. We trained for 14 epochs as proposed in [2,6] using
a batch of dimension 128, resulting into nearly 300k iterations. We used Stocas-
tic Gradient Descent optimizer (SGD) to minimize the Binary Cross Entropy
(BCE) [2,6], a learning rate of 0.003 decreased by a factor 10 after 11 epochs
and a momentum of 0.9.
ConfNet training schedule. We train ConfNet on 256 × 512 images esti-
mating a confidence value for each pixel differently from local approaches that
estimate confidence only for the central one in a patch (thus requiring to center
the neighborhood on a pixel with available ground-truth). Despite training com-
plex architectures like DispNet requires a large amount of data usually obtained
from synthetic datasets [28], we found out that training the same 20 images from
KITTI is enough to effectively learn a confidence measure. This is probably due
to the simpler task the network is faced with. In fact, finding outliers in a dispar-
ity map (i.e., a binary classification of the pixels) is much easier compared to infer
depth from a stereo pair. Moreover, the disparity domain is less variegated than
its RGB counterpart. Despite RGB data being processed jointly with disparity
inside ConfNet, it plays a minor role compared to the latter. Cross-validation
on Middlebury v3 dataset [10], with indoor imagery extremely different from
outdoor environments observed at training time will confirm this fact. We train
ConfNet for 1600 epochs extracting random crops from the training stereo pairs,
for a total of about 32k iterations. It is worth to note that, at training time,
local networks produce a single pixel prediction versus the 256 × 512 available
from ConfNet. For a single iteration, the minimized loss function encodes the
contribution from 128 pixels for local networks (i.e., one for each sample in the
batch) and 216 for ConfNet, processing 512× the amount of data. For this rea-
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sons only 32k iterations are enough for ConfNet to converge compared to the
300k of local methods. Pixels whose disparity ground-truth is not available are
masked when computing the loss function. We used SGD and BCE as for local
networks, with an initial learning rate of 0.003, divided by a factor 10 after 1k
epochs.
LGC-Net final training schedule. Finally, we train the cascaded module
after freezing the weights of the local and global networks. We run additional
14 epochs processing image patches extracted from both disparity, local and
global confidence estimations. The same 20 images, SGD, BCE loss, learning
rate schedule and momentum are used for this training as well.

5 Experimental results

In this section, we report extensive experimental results supporting the superior
accuracy achieved by the proposed LGC-Net compared to state-of-the-art. We
evaluate the newly proposed framework estimating confidence for disparity maps
obtained from three popular algorithms standard in this field [1], respectively
AD-CENSUS [11], MC-CNN-fst matching cost [8] and SGM [12]. For this latter
algorithm, compared to [1], we tuned better P1 and P2 penalties to 3 and 0.03,
obtaining more accurate disparities on KITTI datasets slightly reducing accuracy
on Middlebury v3 dataset. In Section 5.1 we outline the evaluation protocol we
follow to validate our method, in Section 5.2 we report results on both KITTI
2012 dataset [9] (i.e., on images not involved in training) and KITTI 2015, while
in Section 5.3 we cross-validate on Middlebury v3 [10] as commonly done by
most recent works [1] to measure how well the confidence measures perform on
data quite different from the one deployed for training.

5.1 Evaluation protocol

The standard task on which confidence measures are evaluated is outliers de-
tection [13,1]. It consists in assigning to each disparity assignment a score be-
tween 0 an 1 according to their estimated uncertainty. Following the guidelines
of standard evaluation benchmarks [9,7,10], each pixel p of an image is consid-
ered correctly assigned if its disparity d(p) and its ground-truth label d̃(p) are
distant less than a threshold τ , i.e. |d(p) − d̃(p)| < τ . The threshold value is
assigned according to dataset specifications, in particular for KITTI 2012 and
2015 τ usually it is 3 and for Middlebury v3 it is 1 [1]. The same criterion is used
to produce confidence ground-truth labels for training, encoding correct pixels
with a score of 1 and outliers with 0. Since in our experiments the training has
been always carried out on 20 images of the KITTI 2012 dataset, τ is set to
3 to generate labels. To quantitatively evaluate how well a confidence measure
tackles this task, ROC curve analysis represents the standard in this field [13,1].
By plotting the percentage of outliers ε as a function of the amount of pixels
sampled from a disparity map in order of decreasing confidence, we can com-
pute the Area Under the Curve (AUC) and average it over the entire evaluation
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dataset. The lower is the AUC value, the more accurate is the confidence es-
timation for outliers detection purpose. The lower bound on a single disparity
map is obtained according to its error rate ε as

AUCopt =

∫ ε

1−ε

p− (1− ε)
p

dp = ε+ (1− ε) ln (1− ε) (1)

5.2 Evaluation on KITTI datasets

To assess the effectiveness of LGC-Net, we train the networks on the first 20
images of the KITTI 2012 dataset and we report extensive experimental results
on the remaining 174 images of the same stereo dataset [9] as well as on the
entire KITTI 2015 dataset [7]. This second dataset depicts outdoor environ-
ments similar to the first dataset but with the addition of dynamic objects not
present in the other. We evaluate confidence measures provided by standalone
modules (i.e., CCNN, EFN, LFN and the global architecture ConfNet) as well
as those produced by the full local-global framework in two configurations ob-
tained respectively by deploying CCNN [2] or multi-modal architectures [6] as
local network. For a fair comparison, all the evaluated models have been trained
from scratch following the same protocol described in Section 4. Source code is
available here https://github.com/fabiotosi92/LGC-Tensorflow.

Table 1 reports experimental results on KITTI 2012. Each row refers to one
of the three considered algorithms, respectively AD-CENSUS, MC-CNN and
SGM and each column to a confidence measure, reporting AUC values averaged
on the entire dataset. In bold, the best AUC for each algorithm. Considering at
first single networks, we observe that multi-modal network LFN perform simi-
larly to CCNN being this latter method outperformed by a small margin only
with AD-CENSUS. The EFN network has always worse performance compared
to CCCN and LFN. These results highlight that, with LFN and EFN networks
in this configuration, processing the RGB image does not provide additional
information compared to the one inferred from the disparity domain. Looking
at ConfNet we can observe how processing global information only leads, as
expected, to less accurate results with noisy disparity maps provided by AD-
CENSUS but it performs reasonably well, and better than EFN, with smoother
disparity maps generated by SGM and MC-CNN. In particular it is always out-
performed by CCNN and LFN. According to these results, confirmed also by
following evaluations, the global approach alone loses accuracy when dealing
with fine details, despite the deployment of skip-connection between encoder
and decoder sections, while local approaches performs very well in these cases.
Observing LGC-Net results, both configurations outperform all the other eval-
uated techniques, highlighting how the two complementary cues from local and
global networks can be effectively combined to improve confidence estimation
moving a step forward optimality for all the three stereo algorithms. By directly
comparing the two configurations of LGC-Net, using respectively CCNN or LFN
as local network, there is no clear winner highlighting how the contribution given
by the RGB image on a small neighborhood seems negligible. In fact, it yields

https://github.com/fabiotosi92/LGC-Tensorflow
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KITTI 2012 [9] CCNN [2] EFN [6] LFN [6] ConfNet LGC-Net LGC-Net Optim.
(174 images) (CCNN) (LFN)

AD-CENSUS [11] 0.1207 0.1261 0.1201 0.1295 0.1174 0.1176 0.1067
MC-CNN [8] 0.0291 0.0316 0.0294 0.0311 0.0279 0.0278 0.0231

SGM [12] 0.0194 0.0229 0.0198 0.0199 0.0176 0.0175 0.0088

Table 1. Experimental results on KITTI 2012 dataset [9]. From top to bottom, eval-
uation concerning AD-CENSUS [11], MC-CNN [8] and SGM [12] algorithms. For each
column, average AUC achieved on the entire dataset (i.e., 174 out of 194 stereo pairs)
for different confidence measures.

KITTI 2015 [7] CCNN [2] EFN [6] LFN [6] ConfNet LGC-Net LGC-Net Optim.
(200 images) (CCNN) (LFN)

AD-CENSUS [11] 0.1045 0.1087 0.1026 0.1128 0.0999 0.1004 0.0883
MC-CNN [8] 0.0289 0.0319 0.0292 0.0315 0.0281 0.0278 0.0213

SGM [12] 0.0201 0.0239 0.0209 0.0216 0.0193 0.0190 0.0091

Table 2. Experimental results on KITTI 2015 dataset [7]. From top to bottom, eval-
uation concerning AD-CENSUS [11], MC-CNN [8] and SGM [12] algorithms. For each
column, average AUC achieved on the entire dataset (i.e., 200 stereo pairs) for different
confidence measures.

a 0.0001 difference in terms of average AUC between the two versions, in favor
of the first configuration on AD-CENSUS and the second one on MC-CNN and
SGM. These experiments highlights that the major benefit is obtained by the
proposed strategy exploiting local and global context information.

Table 2 reports experimental results on the KITTI 2015 dataset [7], with AUC
values averaged over the available 200 stereo pairs with ground-truth. First of
all, we observe that the same trend observed for KITTI 2012 is confirmed also in
this case, with CCNN being slightly outperformed by LFN only on AD-CENSUS.
CCNN and LFN always provide more accurate estimation accuracy compared
to EFN while ConfNet outperforms this latter method on smoother MC-CNN
and SGM disparity maps as in previous experiment. Finally, the two LGC-Net
versions achieve overall best performance on this dataset, as for KITTI 2012,
confirming the effectiveness of the proposed method. Moreover, the same results
also highlight once again the negligible margin brought in by using the RGB
image with CCNN.

5.3 Cross-validation on Middlebury v3

Having proved the effectiveness of the proposed LGC-Net on KITTI datasets,
we conduct a more challenging evaluation by cross-validating on Middlebury v3
imagery [10] confidence measures trained on the first 20 images of the KITTI
2012 dataset. As done in [1], assessing the performance on a validation dataset
quite different from the one used during the training phase effectively measures
how robust a confidence measure is with respect to circumstances very likely to
occur in practical applications. Being our models trained on KITTI images, de-
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Middlebury v3 [10] CCNN [2] EFN [6] LFN [6] ConfNet LGC-Net LGC-Net Optim.
(15 images) (CCNN) (LFN)

AD-CENSUS [11] 0.1131 0.1263 0.1146 0.1206 0.1099 0.1109 0.0899
MC-CNN [8] 0.0668 0.0781 0.0645 0.0755 0.0624 0.0616 0.0458

SGM [12] 0.0794 0.1005 0.0856 0.0886 0.0703 0.0709 0.0431

Table 3. Experimental results on Middlebury v3 dataset [10]. From top to bottom,
evaluation concerning AD-CENSUS [11], MC-CNN [8] and SGM [12] algorithms. For
each column, average AUC achieved on the entire dataset (i.e., 15 stereo pairs) for
different confidence measures.

picting outdoor environments concerned with autonomous driving applications,
the indoor scenes included in the Middlebury v3 dataset represent a completely
different scenario ideal for the kind of cross-validation outlined.

Table 3 quantitatively summarizes the outcome of this evaluation. First and
foremost, as in previous experiments, LGC-Net outperforms with both configu-
rations all standalone confidence measures confirming the negligible difference,
lower or equal than 0.001, between the two local networks. The trend between
single architectures is substantially confirmed with respect to previous experi-
ments, with ConfNet performing always better than EFN in this cross-evaluation
even with the noisy AD-CENSUS maps. CCNN and LFF, as for previous exper-
iments, performs quite similarly confirming once again the small impact of RGB
cues in local networks with our training configuration.

In Figure 5 we report a qualitative comparison between local, global (ConfNet)
and LGC-Net for two images of the the Middlebury v3 dataset processed with
SGM and MC-CNN stereo algorithms. The quantitative advantages reported for
LGC-Net in the previous evaluations can be clearly perceived qualitatively by
looking, for instance, at texture-less regions on the wall in PianoL stereo pair
and at the occluded area on the background in Pipes stereo pair.

To summarize, exhaustive experiments on three datasets and three stereo
algorithms proved that the proposed framework always outperforms both local
and global standalone strategy by a significant margin, thus effectively learning
to combine local and global cues to obtain more accurate confidence estima-
tion. This trend is also confirmed moving to very different data as reported in
the cross evaluation, proving that LGC-Net is more capable to generalize to
completely different image contents. Overall, the proposed method always out-
performs state-of-the-art methods for confidence estimation.

6 Conclusions

In this paper we propose, for the first time to the best of our knowledge, to
leverage on global and local context to infer a confidence measure for stereo.
Driven by the outstanding results achieved by CNN-based confidence measures,
in this paper we argue that their effectiveness can be improved by changing their
intrinsic local nature. To this aim we propose to combine with a CNN cues in-
ferred with two complementary strategies, based on two very different receptive
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Fig. 5. Qualitative comparison of confidence maps on selected images from Middlebury
v3 dataset [10]. For each sample, we report from top left to bottom right reference
image, disparity map, confidence map respectively for CCNN, ConfNet and LGC-net
and ground-truth confidence labels. On top PianoL pair processed by MC-CNN-fst, on
bottom Pipes pair processed by SGM.

fields. The proposed LGC-Net, a multi-modal cascaded network, merges the out-
come of the two complementary approaches enabling more accurate confidence
estimation. We extensively evaluated the proposed method on three datasets
and three algorithms following standard protocols in this field proving that our
proposal outperforms state-of-the-art confidence measures and further moves a
step forward optimality.
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