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Figure 1. Guided stereo matching. (a) Challenging, reference image from KITTI 2015 [20] and disparity maps estimated by (b) iResNet
[14] trained on synthetic data [19], or (c) guided by sparse depth measurements (5% density). Error rate (> 3) superimposed on each map.

Abstract

Stereo is a prominent technique to infer dense depth
maps from images, and deep learning further pushed for-
ward the state-of-the-art, making end-to-end architectures
unrivaled when enough data is available for training. How-
ever, deep networks suffer from significant drops in accu-
racy when dealing with new environments. Therefore, in
this paper, we introduce Guided Stereo Matching, a novel
paradigm leveraging a small amount of sparse, yet reliable
depth measurements retrieved from an external source en-
abling to ameliorate this weakness. The additional sparse
cues required by our method can be obtained with any strat-
egy (e.g., a LiDAR) and used to enhance features linked
to corresponding disparity hypotheses. Our formulation is
general and fully differentiable, thus enabling to exploit the
additional sparse inputs in pre-trained deep stereo networks
as well as for training a new instance from scratch. Exten-
sive experiments on three standard datasets and two state-
of-the-art deep architectures show that even with a small set
of sparse input cues, i) the proposed paradigm enables sig-
nificant improvements to pre-trained networks. Moreover,
ii) training from scratch notably increases accuracy and ro-
bustness to domain shifts. Finally, iii) it is suited and effec-
tive even with traditional stereo algorithms such as SGM.

1. Introduction
Obtaining dense and accurate depth estimation is piv-

otal to effectively address higher level tasks in computer
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vision such as autonomous driving, 3D reconstruction, and
robotics. It can be carried out either employing active sen-
sors, such as LiDAR, or from images acquired by standard
cameras. The former class of devices suffers from some
limitations, depending on the technology deployed to in-
fer depth. For instance, sensors based on structured light
have limited working range and are ineffective in outdoor
environments, while LiDARs, although very popular and
accurate, provide only sparse depth measurements and may
have shortcomings when dealing with reflective surfaces.
On the other hand, passive sensors based on standard cam-
eras potentially allow obtaining dense depth estimation in
any environment and application scenario. Stereo [28] re-
lies on two (or more) rectified images to compute the dis-
parity by matching corresponding pixels along the horizon-
tal epipolar line, thus enabling to infer depth via triangu-
lation. The most recent trend in stereo consists in train-
ing end-to-end Convolutional Neural Networks (CNNs) on
a large amount of (synthetic) stereo pairs [19] to directly
infer a dense disparity map. However, deep stereo archi-
tectures suffer when shifting domain, for example moving
from synthetic data used for the initial training [19] to the
real target imagery. Therefore, deep networks are fine-tuned
in the target environment to ameliorate domain shift issues.
Nonetheless, standard benchmarks used to assess the accu-
racy of stereo [7, 20, 27, 29] give some interesting insights
concerning such paradigm. While it is unrivaled when a
massive amount of data is available for fine-tuning, as is the
case of KITTI datasets [7, 20], approaches mixing learning
and traditional pipelines [35] are still competitive with deep
networks when not enough data is available, as particularly
evident with Middlebury v3 [27] and ETH3D [29] datasets.
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In this paper, we propose to leverage a small set of sparse
depth measurements to obtain, with deep stereo networks,
dense and accurate estimations in any environment. It is
worth pointing out that our proposal is different from depth
fusion strategies (e.g., [17, 21, 5, 1]) aimed at combining the
output of active sensors and stereo algorithms such as Semi-
Global Matching [10]. Indeed, such methods mostly aim
at selecting the most reliable depth measurements from the
multiple available using appropriate frameworks whereas
our proposal has an entirely different goal. In particular,
given a deep network and a small set (e.g., less than 5% of
the whole image points) of accurate depth measurements
obtained by any means: can we improve the overall ac-
curacy of the network without retraining? Can we reduce
domain shift issues? Do we get better results training the
network from scratch to exploit sparse measurements? To
address these goals, we propose a novel technique acting at
feature level and deployable with any state-of-the-art deep
stereo network. Our strategy enhances the features corre-
sponding to disparity hypotheses provided by the sparse in-
puts maintaining the stereo reasoning capability of the orig-
inal deep network. It is versatile, being suited to boost the
accuracy of pre-trained models as well as to train a new
instance from scratch to achieve even better results. More-
over, it can also be applied to improve the accuracy of con-
ventional stereo algorithms like SGM. In all cases, our tech-
nique adds a negligible computational overhead to the orig-
inal method. It is worth noting that active sensors, espe-
cially LiDAR-based, and standard cameras are both avail-
able as standard equipment in most autonomous driving se-
tups. Moreover, since the cost of LiDARs is dropping and
solid-state devices are already available [26], sparse and ac-
curate depth measurement seems not to be restricted to a
specific application domain. Thus, independently of the
technology deployed to infer sparse depth data, to the best
of our knowledge this paper proposes the first successful
attempt to leverage an external depth source to boost the ac-
curacy of state-of-the-art deep stereo networks. We report
extensive experiments conducted with two top-performing
architectures with source code available, PSMNet by Chang
et al. [3] and iResNet by Liang et al. [14], and standard
datasets KITTI[7, 20], Middlebury v3 [27] and ETH3D
[29]. The outcome of such evaluation supports the three
following main claims of this work:

• Given sparse (< 5% density) depth inputs, applying
our method to pre-trained models always boosts its ac-
curacy, either when the network is trained on synthetic
data only or fine-tuned on the target environments.

• Training from scratch a network guided by sparse in-
puts dramatically increases its generalization capac-
ity, significantly reducing the gap due to domain shifts
(e.g., when moving from synthetic to real imagery).

• The proposed strategy can be applied seamlessly even
to conventional stereo algorithms such as SGM.

In Figure 1 we can notice how on a very challenging
stereo pair from KITTI 2015 [20] (a) a state-of-the-art deep
stereo network trained on synthetic data produces inaccu-
rate disparity maps (b), while guiding it with our method
deploying only 5% of sparse depth data allows for much
more accurate results (c) despite the domain shift.

2. Related work
Stereo has a long history in computer vision and

Scharstein and Szeliski [28] classified conventional algo-
rithms into two main broad categories, namely local and
global approaches, according to the different steps carried
out: i) cost computation, ii) cost aggregation, iii) dispar-
ity optimization/computation and iv) disparity refinement.
While local algorithms are typically fast, they are ineffec-
tive in the presence of low-texture regions. On the other
hand, global algorithms perform better at the cost of higher
complexity. Hirschmuller’s SGM [10] is often the favorite
trade-off between the two worlds and for this reason the
preferred choice for most practical applications. Early at-
tempts to leverage machine learning for stereo aimed at ex-
ploiting learning-based confidence measures [25] to detect
outliers or improve disparity accuracy [34, 23, 24]. Some
works belonging to the latter class modified the cost vol-
ume, an intermediate representation of the matching rela-
tionships between pixels in the two images, by replacing
winning matching costs [34] or modulating their distribu-
tion [23] guided by confidence estimation.

The spread of deep learning hit stereo matching as well.
Early works focused on a single step of traditional stereo
pipelines, for example learning a matching function by
means of CNNs [44, 4, 16], improving optimization carried
out by SGM [30, 31] or refining disparity maps [8, 2]. Later,
the availability of synthetic data [19] enabled to train end-
to-end architectures for disparity estimation embodying all
the steps mentioned above. In the last year, a large num-
ber of frameworks appeared, reaching higher and higher ac-
curacy on KITTI benchmarks [7, 20]. All of them can be
broadly categorized into two main classes according to how
they represent matching relations between pixels along the
epipolar line, similarly to what cost volume computation
does for traditional stereo algorithms.

The first class consists of networks computing correla-
tion scores between features belonging to the left and right
frames. The outcome are feature maps, linked to dispar-
ity hypotheses, concatenated along the channel dimension.
This volume is processed through 2D convolutions, usually
by encoder-decoder architectures. DispNetC by Mayer et
al. [19] was the first end-to-end network proposed in the lit-
erature suggesting this paradigm. More recent architectures
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Figure 2. Example of improved generalization. (a) Reference image from Middlebury [27], disparity maps obtained by (b) iResNet
[14] trained on SceneFlow synthetic dataset [19], (c) iResNet trained on SceneFlow for guided stereo, (d) visually enhanced sparse depth
measurements taken from (e) ground-truth depth. We stress the fact that (b) and (c) are obtained training on synthetic images only.

such as CLR [22], iResNet [14], DispNet3 [11] were built
on top of DispNetC. In addition, other frameworks such as
EdgeStereo [32] and SegStereo [42] jointly tackled stereo
with other tasks, respectively edge detection and semantic
segmentation.

The second class consists of frameworks building 3D
cost volumes (actually, 4D considering the feature dimen-
sion) obtained by concatenation [12] or difference [13] be-
tween left and right features. Such data structure is pro-
cessed through 3D convolutions, and the final disparity map
is the result of a differentiable winner-takes-all (WTA) strat-
egy. GC-Net by Kendall et al. [12] was the first work to fol-
low this strategy and the first end-to-end architecture reach-
ing the top of the KITTI leaderboard. Following architec-
tures built upon GC-Net improved accuracy, adding specific
aggregation modules [15] and spatial pyramidal pooling [3],
or efficiency, by designing a tiny model [13].

Despite the different strategies adopted, both classes
somehow encode the representation of corresponding points
in a data structure similar to the cost volume of conventional
hand-crafted stereo algorithms. Therefore, with deep stereo
networks and conventional algorithm, we will act on such
data structure to guide disparity estimation with sparse, yet
accurate depth measurements.

3. Guided stereo matching
Given sparse, yet precise depth information collected

from an external source, such as a LiDAR or any other
means, our principal goal is to exploit such cues to assist
state-of-the-art deep learning frameworks for stereo match-
ing. For this purpose, we introduce a feature enhancement
technique, acting directly on the intermediate features pro-
cessed inside a CNN by peaking those directly related to the
depth value suggested by the external measurement. This
can be done by precisely acting where an equivalent rep-
resentation of the cost volume is available. The primary
goal of such an approach is to further increase the reliabil-
ity of the already highly accurate disparity map produced
by CNNs. Moreover, we also aim at reducing the issues
introduced by domain shifts. By feeding sparse depth mea-
surements into a deep network during training, we also ex-
pect that it can learn to exploit such information together

with image content, compensating for domain shift if such
measurements are fed to the network when moving to a
completely different domain (e.g., from synthetic to real
imagery). Our experiments will highlight how, following
this strategy, given an extremely sparse distribution of val-
ues, we drastically improve the generalization capacity of
a CNN. Figure 2 shows how deploying a 3.36% density of
sparse depth inputs is enough to reduce the average error of
iResNet from 3.364 to 0.594.

3.1. Feature enhancement

Traditional stereo algorithms collect into a cost volume
the relationship between potentially corresponding pixels
across the two images in a stereo pair, either encoding sim-
ilarity or dissimilarity functions. The idea we propose con-
sists in opportunely acting on such representation, still en-
coded within modern CNNs employing correlation or con-
catenation between features from the two images, favoring
those disparities suggested by the sparse inputs. Networks
following the first strategy [19, 14, 42, 32, 22] use a corre-
lation layer to compute similarity scores that are higher for
pixels that are most likely to match, while networks based
on the second strategy rely upon a 3D volume of concate-
nated features. The cost volume of a conventional stereo
algorithm has dimension H × W × D, with H × W be-
ing the resolution of the input stereo pair and D the max-
imum disparity displacement considered, while representa-
tive state-of-the-art deep stereo networks rely on data struc-
tures of dimension, respectively, H×W×(2D+1) [19] and
H×W×D×2F [12], being F the number of features from
a single image. Given sparse depth measurements z, we can
easily convert them into disparities d by knowing the focal
length f and baseline b of the setup used to acquire stereo
pairs, as d = b · f · 1z .

With the availability of sparse external data in the dis-
parity domain, we can exploit them to peak the correlation
scores or the features activation related to the hypotheses
suggested by these sparse hints and to dampen the remain-
ing ones. For example, given a disparity value of k, we will
enhance the k-th channel output of a correlation layer or
the k-th slice of a 4D volume. For our purposes, we intro-
duce two new inputs, both of size H×W : a (sparse) matrix



G, conveying the externally provided disparity values, and
a binary mask V , specifying which elements of G are valid
(i.e., if vij = 1). For each pixel with coordinates (i, j) in the
reference image such that vij = 1 we alter features as dis-
cussed before, based on the known disparity value gij . On
the other hand, every point with vij = 0 is left untouched.
Thus, we rely on the ability of the deep network to reason
about stereo and jointly leverage the additional information
conveyed by sparse inputs.

In literature, some techniques were proposed to modify
the cost volume of traditional stereo algorithms leveraging
prior knowledge such as per-pixel confidence scores [25].
A simple, yet effective approach for this purpose consists
in hard-replacing matching costs (features, in our case). In
[34], matching costs of winning disparities were set to the
minimum value and the remaining ones to the maximum,
only for those pixels having high confidence score before
optimization. The equivalent solution in our domain would
consist in zeroing each element corresponding to a disparity
d such that gij 6= d. However, this strategy has severe limi-
tations: it is not well-suited for CNNs, either when injected
into a pre-trained network – a large number of zero val-
ues would aggressively alter its behavior – or when plugged
during the training from scratch of a new model – this would
cause gradients to not be back-propagated on top of features
where the zeros have been inserted. Moreover, no default
behavior is defined in case of sub-pixel input disparities,
unless they are rounded at the cost of a loss in precision.

Conversely, we suggest to modulate using a Gaussian
function centred on gij , so that the single correlation score
or 2F features corresponding to the disparity d = gij are
multiplied by the peak of the function, while any other ele-
ment is progressively multiplied by lower factors, until be-
ing dampened the farther they are from gij . Specifically,
our modulating function will be

k · e−
(d−gij)

2

2c2 (1)

where c determines the width of the Gaussian, while k rep-
resents its maximum magnitude and should be greater than
or equal to 1. Thus, to obtain a new feature volume G by
multiplying the whole correlation or 3D volume F regard-
less of the value of vij , we apply

G =

(
1− vij + vij · k · e−

(d−gij)
2

2c2

)
· F (2)

making the weight factor equal to 1 when vij = 0. An
example of the effect of our modulation is given in Figure 3
(left).

3.2. Applications of guided stereo

We will now highlight some notable applications of our
technique, that will be exhaustively discussed in the experi-
mental result section.

Pre-trained deep stereo networks. The proposed Gaus-
sian enhancement acts smoothly, yet effectively, on the fea-
tures already learned by a deep network. Opportunely tun-
ing the hyper-parameters k and c, we will prove that our
method allows improving the accuracy of pre-trained state-
of-the-art networks.

Training from scratch deep stereo networks. Com-
pared to a brutal zero-product approach, the dampening
mechanism introduced by the Gaussian function still allows
gradient to flow, making this technique suited for deploy-
ment inside a CNN even at training time, so that it can
learn from scratch how to better exploit the additional cues.
Specifically, the gradients of G with respect to weights W
will be computed as follows:

∂G
∂W

=

(
1− vij + vij · k · e−

(d−gij)
2

2c2

)
· ∂F
∂W

(3)

Thus, training from scratch a deep network leveraging the
sparse input data is possible with our technique.

Conventional stereo matching algorithms. These
methods, based on hand-crafted pipelines, can also take ad-
vantage of our proposal by leveraging sparse depth cues
to improve their accuracy. Sometimes they do not use
a similarity measure (e.g., zero mean normalized cross-
correlation) to encode the matching cost, for which the same
strategy described so far applies, but cost volumes are built
using a dissimilarity measure between pixels (e.g., sum of
absolute/squared differences or Hamming distance [43]). In
both cases, the winning disparity is assigned employing a
WTA strategy. When deploying a dissimilarity measure,
costs corresponding to disparities close to gij should be
reduced, while the others amplified. We can easily adapt
Gaussian enhancement by choosing a modulating function
that is the difference between a constant k and a Gaussian
function with the same height, obtaining an enhanced vol-
ume G from initial costs F as

G =

[
1− vij + vij · k ·

(
1− e−

(d−gij)
2

2c2

)]
· F (4)

Figure 3 (right) shows the effect of this formulation.

4. Experimental Results
In this section, we report exhaustive experiments proving

the effectiveness of the Guided Stereo Matching paradigm
showing that the proposed feature enhancement strategy
always improves the accuracy of pre-trained or newly
trained networks significantly. Moreover, when train-
ing the networks from scratch, our proposal increases
the ability to generalize to new environments, thus en-
abling to better tackle domain shifts. Demo source code
is available at https://github.com/mattpoggi/
guided-stereo.

https://github.com/mattpoggi/guided-stereo
https://github.com/mattpoggi/guided-stereo


Figure 3. Application of the proposed feature enhancement. In blue, features F for pixel i, j in proximity of d = gij , in black the
modulating function, in red enhanced features G for vij = 1, applied to correlation features (left) or dissimilarity functions (right).

iResNet [14] PSMNet [3]
c k=1 k=10 k=100 k=1 k=10 k=100

0.1 2.054 1.881 2.377 4.711 4.391 4.326
1 1.885 1.338 6.857 4.540 3.900 4.286

10 1.624 1.664 32.329 4.539 3.925 9.951
Table 1. Tuning of Gaussian hyper-parameters k and c. Experi-
ments with iResNet (left) and PSMNet (right) trained on synthetic
data and tested on KITTI 2015 (average errors without modula-
tion: 1.863 and 4.716)

4.1. Training and validation protocols

We implemented our framework in PyTorch. For our ex-
periments, we chose two state-of-the-art models representa-
tive of the two categories described so far and whose source
code is available, respectively iResNet [14] for correlation-
based architectures and PSMNet [3] for 3D CNNs. Both
networks were pre-trained on synthetic data [19] following
authors’ instructions: 10 epochs for PSMNet [3] and 650k
iterations for iResNet [14]. The only difference was the
batch size of 3 used for PSMNet since it is the largest fit-
ting in a single Titan Xp GPU used for this research. The
proposed guided versions of these networks were trained
accordingly following the same protocol. Fine-tuning on
realistic datasets was carried out following the guidelines
from the original works when available. In particular, both
papers reported results and a detailed training protocol for
KITTI datasets [3, 14], while training details are not pro-
vided for Middlebury [27] and ETH3D [29], despite results
are present on both benchmarks. The following sections
will report accurate details about each training protocol de-
ployed in our experiments. To tune k and c, we ran a pre-
liminary experiment applying our modulation on iResNet
and PSMNet models trained on synthetic data and tested on
KITTI 2015 training set [20]. Table 1 shows how the aver-
age error varies with different values of k and c. According
to this outcome, for both networks we will fix k and c, re-
spectively, to 10 and 1 for all the following experiments.

To simulate the availability of sparse depth cues, we ran-
domly sample pixels from the ground-truth disparity maps
for both training and testing. For this reason, all the evalua-
tion will be carried out on the training splits available from

KITTI, Middlebury and ETH3D datasets. Finally, we point
out that the KITTI benchmarks include a depth completion
evaluation. However, it aims at assessing the performance
of monocular camera systems coupled with an active sensor
(i.e., LiDAR) and thus the benchmark does not provide the
stereo pairs required for our purposes.

4.2. Evaluation on KITTI

At first, we assess the performance of our proposal on
the KITTI 2015 dataset [20]. Table 2 collects results ob-
tained with iResNet and PSMNet trained and tested in dif-
ferent configurations. For each experiment we highlight the
imagery used during training, respectively the SceneFlow
dataset alone [19] or the KITTI 2012 [7] used for fine-
tuning (“-ft”). Moreover, we report results applying our fea-
ture enhancement to pre-trained networks (i.e., at test time
only, “-gd”) and training the networks from scratch (“-gd-
tr”). For each experiment, we report the error rate as the
percentage of pixels having a disparity error larger than a
threshold, varying between 2 and 5, as well as the mean av-
erage error on all pixels with available ground-truth. To ob-
tain sparse measurements, we randomly sample pixels with
a density, computed on the whole image, of 5% on Scene-
Flow [19]. On KITTI, we keep a density of 15%, then re-
move unlabelled pixels to obtain again 5% with respect to
the lower portion of the images with available ground-truth
(i.e., a 220× 1240 pixel grid).

From Table 2 we can notice how both baseline architec-
tures (row 1 and 7) yield large errors when trained on Scene-
Flow dataset only. In particular, PSMNet seems to suffer the
domain shift more than correlation-based technique iRes-
Net. By applying the proposed feature enhancement to both
networks, we can ameliorate all metrics sensibly, obtaining
first improvements to network generalization capability. In
particular, by looking at the > 3 error rate, usually taken
as the reference metric in KITTI, we have an absolute re-
duction of about 3.8 and 4.3 % respectively for iResNet-gd
and PSMNet-gd compared to the baseline networks. In this
case, we point out once more that we are modifying only
the features of a pre-trained network, by just altering what
the following layers are used to process. Nonetheless, our



Model Training Datasets Guide Error rate (%) avg.
SceneFlow KITTI 12 Train Test >2 >3 >4 >5 (px)

iResNet [14] X 21.157 11.959 7.881 5.744 1.863
iResNet-gd X X 15.146 8.208 5.348 3.881 1.431

iResNet-gd-tr X X X 7.266 3.663 2.388 1.754 0.904
iResNet-ft [14] X X 9.795 4.452 2.730 1.938 1.049
iResNet-ft-gd X X X 7.695 3.812 2.524 1.891 0.994

iResNet-ft-gd-tr X X X X 4.577 2.239 1.476 1.099 0.735
PSMNet [3] X 39.505 27.435 20.844 16.725 4.716
PSMNet-gd X X 33.386 23.125 17.598 14.101 3.900

PSMNet-gd-tr X X X 12.310 3.896 2.239 1.608 1.395
PSMNet-ft [3] X X 6.341 3.122 2.181 1.752 1.200
PSMNet-ft-gd X X X 5.707 3.098 2.266 1.842 1.092

PSMNet-ft-gd-tr X X X X 2.738 1.829 1.513 1.338 0.763
Table 2. Experimental results on KITTI 2015 dataset [20]. Tag “-gd” refers to guiding the network only at test time, “-tr” to training the
model to leverage guide, “-ft” refers to fine-tuning performed on KITTI 2012 [7].

avg = 2.82
> 3 = 27.6%

avg = 1.56
> 3 = 3.0%

Figure 4. Comparison between variants of PSMNet [3]. From top to bottom, reference image from 000022 pair (KITTI 2015 [20]),
disparity maps obtained by PSMNet [3] and PSMNet-gd-tr, both trained on synthetic images only.

proposal preserves the learned behavior of the baseline ar-
chitecture increasing at the same time its overall accuracy.

When training the networks from scratch to pro-
cess sparse inputs with our technique, iResNet-gd-tr and
PSMNet-gd-tr achieve a notable drop regarding error rate
and average error compared to the baseline models. Both
reach degrees of accuracy comparable to those of the orig-
inal network fine-tuned on KITTI 2012, iResNet-ft and
PSMNet-ft without actually being trained on such realis-
tic imagery, by simply exploiting a small amount of depth
samples (about 5%) through our technique. Moreover, we
can also apply the feature enhancement paradigm to fine-
tuned models. From Table 2 we can notice again how our
technique applied to the fine-tuned models still improves
their accuracy. Nonetheless, fine-tuning the networks pre-
trained to exploit feature enhancement leads to the best re-
sults across all configurations, with an absolute decrease of
about 2.2 and 1.3% compared, respectively, to the already
low error rate of iResNet-ft and PSMNet-ft. Finally, Fig-
ure 4 shows a comparison between the outputs of different
PSMNet variants, highlighting the superior generalization
capacity of PSMNet-gd-tr compared to baseline model.

4.3. Evaluation on Middlebury

We also evaluated our proposal on Middlebury v3 [27],
since this dataset is notoriously more challenging for end-
to-end architectures because of the very few images avail-
able for fine-tuning and the more heterogeneous scenes
framed compared to KITTI. Table 3 collects the outcome
of these experiments. We use the same notation adopted for

KITTI experiments. All numbers are obtained processing
the additional split of images at quarter resolution, since
higher-resolution stereo pairs do not fit into the memory
of a single Titan Xp GPU. Fine-tuning is carried out on
the training split. We compute error rates with thresholds
0.5, 1, 2 and 4 as usually reported on the online bench-
mark. Sparse inputs are randomly sampled with a density
of 5% from ground-truth data. We can notice how applying
feature enhancement on both pre-trained models or train-
ing new instances from scratch gradually reduces the errors
as observed on KITTI experiments. Interestingly, we point
out that while this trend is consistent for iResNet-gd and
iResNet-gd-tr, a different behavior occurs for PSMNet-gd-
tr. In particular, we can notice a huge reduction of the error
rate setting the threshold to > 2 and > 4. On the other
hand, the percentage of pixels with lower disparity errors
> 0.5 and > 1 gets much higher. Thus, with PSMNet,
the architecture trained with guiding inputs seems to correct
most erroneous patterns at the cost of increasing the num-
ber of small errors. Nonetheless, the average error always
decreases significantly.

Regarding fine-tuning, we ran about 300 epochs for each
baseline architecture to obtain the best results. After this
phase, we can observe minor improvements for iResNet,
while PSMNet improves its accuracy by a large margin. Mi-
nor, but consistent improvements are yielded by iResNet-ft-
gd and PSMNet-ft-gd. Finally, we fine-tuned iResNet-ft-
gd-tr and PSMNet-ft-gd-tr for about 30 epochs, sufficient
to reach the best performance. Again, compared to all other
configurations, major improvements are always yielded by



Model Training Datasets Guide Error rate (%) avg.
SceneFlow trainingQ Train Test >0.5 >1 >2 >4 (px)

iResNet [14] X 69.967 50.893 30.742 16.019 2.816
iResNet-gd X X 62.581 40.831 22.154 10.889 2.211

iResNet-gd-tr X X X 44.385 25.555 12.505 5.776 1.470
iResNet-ft [14] X X 69.526 49.027 28.178 14.126 2.682
iResNet-ft-gd X X X 60.979 36.255 19.558 10.136 2.130

iResNet-ft-gd-tr X X X X 31.526 17.045 8.316 4.307 0.930
PSMNet [3] X 54.717 33.603 20.239 13.304 5.332
PSMNet-gd X X 53.090 31.416 18.619 12.588 4.921

PSMNet-gd-tr X X X 83.433 54.147 7.472 3.208 1.732
PSMNet-ft [3] X X 45.523 25.993 15.203 8.884 1.964
PSMNet-ft-gd X X X 44.004 25.151 14.337 8.676 1.894

PSMNet-ft-gd-tr X X X X 32.715 15.724 6.937 3.756 1.348
Table 3. Experimental results on Middlebury v3 [27]. “-gd” refers to guiding the network only at test time, “-tr” to training the model to
leverage guide, “-ft” refers to fine-tuning performed on trainingQ split.

Model Training Datasets Guide Error rate (%) avg.
SceneFlow ETH3D Train Test >0.5 >1 >2 >4 (px)

iResNet [14] X 57.011 36.944 20.380 12.453 5.120
iResNet-gd X X 50.361 29.767 16.495 10.293 2.717

iResNet-gd-tr X X X 26.815 10.673 3.555 1.312 0.537
iResNet-ft [14] X X 48.360 26.212 11.865 4.678 0.997
iResNet-ft-gd X X X 47.539 22.639 8.153 2.445 0.820

iResNet-ft-gd-tr X X X X 23.433 8.694 2.803 0.876 0.443
PSMNet [3] X 45.522 23.936 12.550 7.811 5.078
PSMNet-gd X X 43.667 21.140 10.773 7.081 4.739

PSMNet-gd-tr X X X 96.976 71.970 2.730 0.512 1.266
PSMNet-ft [3] X X 28.560 11.895 4.272 1.560 0.560
PSMNet-ft-gd X X X 25.707 10.095 3.084 1.123 0.505

PSMNet-ft-gd-tr X X X X 17.865 4.195 1.360 0.817 0.406
Table 4. Experimental results on ETH3D dataset [29]. “-gd” refers to guiding the network only at test time, “-tr” to training the model
to leverage guide, “-ft” refers to fine-tuning performed on the training split (see text).

guiding both networks.

4.4. Evaluation on ETH3D

Finally, we assess the performance of our method on
the ETH3D dataset [29]. In this case we split the train-
ing dataset, using images from delivery area 1l, deliv-
ery area 1s, electro 1l, electro 1s, facade 1s, forest 1s,
playground 1l, playground 1s, terrace 1s, terrains 1l, ter-
rains 1s for fine-tuning and the remaining ones for testing.
For -ft models, we perform the same number of training
epochs as for Middlebury dataset, and Table 4 collects re-
sults for the same configurations considered before. We can
notice behaviors similar to what reported in previous ex-
periments. By guiding iResNet we achieve major improve-
ments, nearly halving the average error, while the gain is
less evident for PSMNet, although beneficial on all metrics.
Training iResNet-gd-tr and PSMNet-gd-tr leads to the same
outcome noticed during our experiments on Middlebury. In
particular, PSMNet-gd-tr still decimates the average error
and percentage of errors greater than 2 and 4 at the cost of
a large amount of pixels with error greater than 0.5 and 1.
With this dataset, fine-tuning the baseline models enables to

significantly increase the accuracy of both, in particular dec-
imating the average error from beyond 5 pixels to less than
1. Nevertheless, our technique is useful even in this case,
enabling minor yet consistent improvements when used at
test time only and significant boosts for iResNet-ft-gd-tr and
PSMNet-ft-gd-tr, improving all metrics by a large margin.

4.5. Evaluation with SGM

To prove the effectiveness of our proposal even with con-
ventional stereo matching algorithms, we evaluated it with
SGM [10]. For this purpose, we used the code provided by
[33], testing it on all datasets considered so far. As pointed
out in Section 3.2, feature enhancement can be opportunely
revised as described in Equation 4 to deal with dissimilarity
measures. We apply this formulation before starting scan-
line optimizations. As for any previous experiments, we
sample sparse inputs as described in Section 4, obtaining
an average density below 5%. Table 5 reports the compari-
son between SGM and its cost enhanced counterpart using
sparse input cues (SGM-gd) on KITTI 2012 [7] (top) and
KITTI 2015 [20] (bottom). With both datasets we can no-
tice dramatic improvements in all metrics. In particular, the



Alg. Error rate (%) avg.
>2 >3 >4 >5 (px)

SGM [10] 11.845 8.553 7.109 6.261 2.740
SGM-gd 5.657 4.601 4.162 3.892 2.153

SGM [10] 15.049 8.843 6.725 5.645 2.226
SGM-gd 6.753 4.294 3.625 3.282 1.680

Table 5. Experimental results on KITTI. Comparison between
raw [10] and guided SGM on KITTI 2012 (top) and 2015 (bottom).

Alg. Error rate (%) avg.
>0.5 >1 >2 >4 (px)

SGM [10] 62.428 32.849 20.620 15.786 4.018
SGM-gd 56.882 24.608 12.655 9.909 2.975

SGM [10] 64.264 31.966 18.741 14.675 4.978
SGM-gd 59.596 24.856 11.307 8.960 3.815

SGM [10] 58.994 27.356 10.685 5.632 1.433
SGM-gd 54.051 20.156 4.169 2.459 1.032

Table 6. Experimental results on Middlebury v3 and ETH3D
datasets. Comparison between raw [10] and guided SGM on
training (top), additional (middle) [27] and ETH3D [29] (bottom).

amount of outliers > 2 is more than halved and reduced
in absolute by about 4, 3 and 2% for higher error bounds.
Table 6 reports experiments on Middlebury training (top)
and additional (bottom) splits [27], as well as on the en-
tire ETH3D training set [29]. Experiments on Middlebury
are carried out at quarter resolution for uniformity with pre-
vious experiments with deep networks reported in Section
4.3. The error rate is reduced by about 5.5% for > 0.5 on
the three experiments, by about 7.5% for > 1, nearly halved
on Middlebury and reduced by a factor 2.5 on ETH3D for
> 2, and by 6, 6 and 3% for > 4. Finally, average errors are
reduced by 1.1 on Middlebury and 1.4 on ETH3D.

The evaluation with SGM highlights how our tech-
nique can be regarded as a general purpose strategy en-
abling notable improvements in different contexts, rang-
ing from state-of-the-art deep learning frameworks to tra-
ditional stereo algorithms.

4.6. Experiments with Lidar measurements

Finally, we evaluate the proposed paradigm using as
guide the raw and noisy measurements from a Velodyne
sensor [40], to underline the practical deployability of the
proposed solution further. Table 7 reports experiment from
sequence 2011 09 26 0011 of the KITTI raw dataset [6].
We compare our framework with fusion strategies proposed
by Martins et al. [18] and Marin et al. [17], combining out-
puts by the stereo networks respectively with monocular es-
timates (using the network by Guo et al. [9]) and Lidar, re-
porting the ideal result as in [17]. Ground-truth labels for
evaluation are provided by [39]. Our proposal consistently
outperforms fusion approaches by a large margin, evaluat-
ing on all pixels (All) as well as excluding those with Lidar
(NoG) to stress that the improvement yielded by our method

Model / Alg. <2% avg.
All NoG All NoG

iResNet [14] 18.42 18.37 1.28 1.28
iResNet+Martins et al. [18] 18.14 18.09 1.26 1.26
iResNet+Marin et al. (opt.) 15.20 18.37 1.07 1.28

iResNet-gd 11.12 10.99 1.04 1.03
iResNet-gd-tr 5.38 5.27 0.77 0.77
iResNet-ft [14] 5.29 5.30 0.81 0.81

iResNet-ft+Martins et al. [18] 5.26 5.28 0.80 0.80
iResNet-ft+Marin et al. [17] (opt.) 4.48 5.30 0.67 0.81

iResNet-ft-gd 3.14 3.13 0.64 0.64
iResNet-ft-gd-tr 1.91 1.88 0.55 0.55

PSMNet [3] 38.60 38.86 2.36 2.37
PSMNet+Martins et al. [18] 38.32 38.58 2.33 2.34

PSMNet+Marin et al. [17] (opt.) 34.85 38.86 1.99 2.17
PSMNet-gd 33.47 33.74 2.07 2.08

PSMNet-gd-tr 21.57 21.30 1.60 1.59
PSMNet-ft [3] 1.71 1.73 0.72 0.72

PSMNet-ft+Martins et al. [18] 1.82 1.83 0.72 0.72
PSMNet-ft+Marin et al. [17] (opt.) 1.52 1.73 0.66 0.72

PSMNet-ft-gd 1.13 1.15 0.60 0.61
PSMNet-ft-gd-tr 0.67 0.67 0.47 0.47

SGM [10] 9.42 9.54 1.24 1.24
SGM+Martins et al. [18] 9.41 9.53 1.24 1.24

SGM+Marin et al. [17] (opt.) 8.15 9.54 1.14 1.24
SGM-gd 2.79 3.03 0.99 0.99

Table 7. Experiments on KITTI Velodyne, seq. 2011 09 26 0011.

is not limited to pixels with associated Lidar measurement
in contrast to fusion techniques [17].

5. Conclusions

In this paper, we proposed Guided Stereo Matching, a
novel paradigm to boost state-of-the-art deep architectures
trained for dense disparity inference using as additional in-
put cue a small set of sparse depth measurements provided
by an external source. By enhancing the features that en-
code matching relationships between pixels across left and
right images, we can improve the accuracy and robustness
to domain shifts. Our feature enhancement strategy can be
used seamlessly with pre-trained models, yielding signifi-
cant accuracy improvements. More importantly, thanks to
its fully-differentiable nature, it can even be used to train
new instances of a CNN from scratch, in order to fully ex-
ploit the input guide and thus to remarkably improve overall
accuracy and robustness to domain shifts of deep networks.
Finally, our proposal can be deployed even with conven-
tional stereo matching algorithms such as SGM, yielding
significant improvements as well. The focus of future work
will be on devising strategies to guide our method without
relying on active sensors. For instance, selecting reliable
depth labels leveraging confidence measures [25] – since
this strategy proved to be successful for self-supervised
adaptation [36, 37] and training learning-based confidence
measures [38] – or from the output of a visual stereo odom-
etry systems [41].
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