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Abstract

Confidence measures for stereo earned increasing popularity in most recent works
concerning stereo, being effectively deployed to improve its accuracy. While most mea-
sures are obtained by processing cues from the cost volume, top-performing ones usually
leverage on random-forests or CNNs to predict match reliability. Therefore, a proper
amount of labeled data is required to effectively train such confidence measures. Being
such ground-truth labels not always available in practical applications, in this paper we
propose a methodology suited for training confidence measures in a self-supervised man-
ner. Leveraging on a pool of properly selected conventional measures, we automatically
detect a subset of very reliable pixels as well as a subset of erroneous samples from the
output of a stereo algorithm. This strategy provides labels for training confidence mea-
sures based on machine-learning technique without ground-truth labels. Compared to
state-of-the-art, our method is neither constrained to image sequences nor to image con-
tent. Experimental results on three challenging datasets with three stereo algorithms and
three state-of-the-art confidence measures based on machine-learning techniques confirm
the effectiveness of our proposal for self-supervised training.

1 Introduction
Accurate and dense depth estimation is a crucial step for several computer vision applica-
tions. Passive stereo, compared to active technologies such as LIDAR, structured light and
time-of-flight sensors, is often the preferred choice thanks to its accuracy, low cost and its fit-
ting with indoor and outdoor environments. Although most state-of-the-art stereo algorithms
rely on the popular disparity optimization proposed by Semi Global Matching (SGM) [9],
a recent trend to improve stereo accuracy, especially when facing with challenging environ-
ments [6, 17, 28], consists in exploiting the additional information provided by confidence
measures [20, 24, 29, 31] encoding the degree of uncertainty of depth data. The common
ground in these works consists in inferring a confidence measure trained on labeled data and
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(a) (b)

(c) (d)
Figure 1: Overview of our proposal. (a) Reference frame 000122 from KITTI 12 dataset [6],
(b) disparity map generated by SGM algorithm [9], (c) labels inferred by our method and
(d) labels assigned comparing the output of SGM with ground-truth data. In green and red,
respectively, correct and wrong labels.

its deployment to adjust cost volume (i.e., the pool of matching costs) for improved stereo
accuracy. Focusing on confidence estimation, machine-learning approaches proved to be
more effective than traditional ones, reviewed and evaluated in [10] and more recently in
[22], as reported in [8, 20, 24, 31] for methods based on random-forest and in [21, 25, 29]
for those leveraging on Convolutional Neural Networks (CNNs). Despite their differences,
all these methods predict match reliability and thus, both conventional and machine-learning
approaches, will be referred to as confidence measure.

Regardless of their specific deployment purpose, confidence estimation techniques based
on machine-learning require a significant amount of training samples obtained from ground-
truth data. In general, the higher amount and variety of labeled data available, the more
effective the confidence estimation is. However, excluding a tedious and time consuming
manual labeling, accurate ground-truth labels require either not trivial setup based on struc-
tured light, as described in [28], or expensive and appropriately registered active sensors,
typically LIDAR, as done in [6, 17]. The first strategy provides dense (i.e., available for
each point) ground-truth labels but it is only suited for still scenes acquired in indoor envi-
ronments while the latter one enables to determine sparse ground-truth data from any indoor
and outdoor environment. To overcome these issues, synthetic datasets have been recently
deployed to train end-to-end stereo methods based on CNNs [16] with satisfactory results.
However, such method requires an additional fine tuning on large labeled real data (e.g., the
whole 194 images of the KITTI 2012 training dataset in [16]) to achieve top performance on
standard datasets. Thus, regardless of the desired goal, self-supervised and accurate labeling
of disparity is crucial when dealing with machine-learning algorithms that require, for a spe-
cific application domain, a large amount of training samples as would occur in most practical
circumstances.

To this aim Mostegel et al. [19] proposed an automatic technique, referred to as SELF,
capable to automatically assign labels to train confidence measures by leveraging on contra-
dictions and consistencies between disparity maps generated by the same stereo algorithm
from multiple view points. This self-supervised approach proved to be very effective but
it intrinsically suffers of two strong limitations. Firstly, it requires image sequences which
are not always available. For instance, the Middlebury 2014 dataset [28] does not provide
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such data at all. Moreover, this method accounts for camera ego-motion but it does not en-
able to detect labels belonging to moving subjects, such as cars or pedestrians, in the sensed
environment.

Therefore, to overcome these issues we propose an approach to automatically generate,
in a self-supervised manner, labels for training confidence measures without any of the afore-
mentioned constraints. Our method, given a disparity map generated by a stereo algorithm,
assigns a correct label to highly confident points and a wrong label to poorly reliable dis-
parity measurements leveraging on the joint estimation provided by a pool of conventional
confidence measures which do not require any training phase. Figure 1 summarizes our pro-
posal. Given a stereo pair (a) and the disparity map generated by a stereo algorithms (b),
we determine (c) training labels by assigning correct (green) or wrong (red) labels according
to the joint confidence estimation carried out by means of conventional measures. In this
very image, compared to ground-truth, our method correctly estimates 97.57% of correct
and wrong labels. In the same figure, (d) shows for the same disparity map the intersection
with ground-truth points.

We assess the performance of our self-supervised labeling approach on three challenging
datasets (KITTI 12 [6], KITTI 15 [17] and Middlebury 2014 [28], referred to as MIDD
14) with three stereo algorithms characterized by different accuracy (block-matching, MC-
CNN [32] and SGM [9]) by training on labels inferred by our method three state-of-the-art
confidence measures [24, 25, 29] based on machine-learning. Our experimental evaluation
with three state-of-the-art confidence measures clearly highlights that, using the same images
for training, the proposed method not only provides an unconstrained labeling strategy with
respect to SELF [19] but it also yields much more accurate confidence estimation.

2 Related work
The literature concerning confidence measures is relevant to our work and this topic has
been reviewed and evaluated in [3, 4, 10]. In particular, [10] categorizes conventional con-
fidence approaches according to the input cue processed and quantitatively evaluates their
performance on two datasets by exploiting ROC curve analysis. More recent works in this
field, reviewed and evauated in [22], deploy machine-learning techniques. In [8, 20, 24, 31]
by feeding a random-forest with hand-crafted features and in [25, 29] by analyzing with a
CNN the raw disparity map [25], features extracted from it [29] or the entire cost volume
[30]. Currently, [21, 24, 25, 29] are top-performing approaches for confidence estimation
and in [27] was shown how to improve the accuracy of a confidence prediction by exploiting
its local consistency with a CNN. Concerning confidence measures for embedded systems,
in [23] were reviewed and evaluated approaches compatible with constrained architectures.
Recent works also proved the potential of confidence measures to achieve better results from
stereo. Specifically, in [31] as input cue for disparity inference based on MRF while in other
cases to improve the effectiveness of the SGM algorithm modulating its raw matching costs
[20], weighting the contribution of multiple scanline optimizations [24], dynamically adjust-
ing P1 and P2 parameters [29] or for disparity refinement [7]. Finally, in [15, 18], confidence
measures have been deployed for sensor fusion.

Concerning stereo, MC-CNN [32] represents the first successfully attempt to deploy deep
learning for disparity inference by training a CNN to predict raw matching costs refined by a
conventional processing pipeline. Other approaches following this strategy are [1, 14] while
in [26] a CNN was trained to combine the outcome of multiple stereo algorithms. Mayer et
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al. [16] proposed the first end-to-end approach for disparity prediction by training a CNN on
a large synthetic dataset and fine-tuning their method on realistic dataset with ground-truth.
In this field, current state-of-the-art is represented by Kendall et al. [11]. It deploys a very
deep architecture trained end-to-end: extracting features to build a cost volume, processing
such data by means of 3D convolutions and finally adopting a learned WTA strategy.

A common issue with machine-learning techniques for disparity and confidence esti-
mation is the requirement of training data. In fact, most methods need a large amount of
ground-truth labeled samples to achieve the best performance. Thus, self-supervised learn-
ing earn increasing importance to overcome this issue when large datasets are not available.
Garg et al. [5] proposed a self-supervised learning framework applied to a CNN deployed
for single-camera depth estimation. Long et al. [13] proved how to learn image matching
by training a CNN on video sequences. Given two images, the network is trained to infer
a third one, then gradients with respect to input frames are computed and their response is
used to find corresponding pixels. Finally, Mostegel et al. [19] proposed a methodology to
automatically generate training data from stereo sequences, reasoning on contradictions and
consistencies between disparity maps obtained from different view points and testing their
strategy to train machine-learning based confidence measures. To the best of our knowledge,
this is the only method to obtain for this task training labels in a self-supervised manner and
thus it represents the most relevant approach concerned with our work.

3 Self-supervised labeling
In this section we outline our proposal to automatically determine training labels from stereo
pairs in order to obtain a distribution of training labels as much as possible similar to GT
data. The fundamental underlying assumption made by our method concerns the capability
of a combination of hand-crafted confidence measures to discriminate between correct and
wrong disparity assignments generated by a stereo algorithm. This selection procedure al-
lows us to obtain two distinct labels, correct and wrong, that can be used as training samples
for state-of-the-art confidence measures based on machine-learning. The primary goal of
this method is to find a set of values as accurate as possible with the aim of reducing the
number of false positive and false negative labels which could negatively affect training and
consequently inference. Since we want to avoid a chicken-and-egg situation we can’t rely
on machine-learning confidence estimation for label selection and thus a careful choice of
traditional confidence measures is mandatory.

The effectiveness of a specific confidence measure is quantitatively assessed by means
of a ROC curve analysis [10, 22] according to a standard procedure in this field [8, 20, 21,
24, 25, 27, 29, 31]. This strategy enables to determine how well a confidence estimator can
discriminate between correct and wrong matches. The behavior of the curve itself encodes
several important aspects of a confidence measure. For example, a flat portion of the curve
indicates a large amount of pixels sharing the same estimated confidence. The extensive
evaluation reported in [10] showed how different measures behave differently according to
the processed cues as well as the adopted strategy. In particular, for the same pixel, different
measures typically provide contradictory scores. This fact has been successfully exploited to
infer much more effective confidence measures analyzing with random-forest [8, 20, 24, 31]
or a CNN [21] a pool of not very effective confidence measures.

Our strategy relies on a set of conventional, yet according to the literature [2, 10, 12, 20,
22, 31] reliable, confidence measures to automatically generate classification labels with a
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distribution as much as possible similar to GT data required to train state-of-the-art measures
based on machine-learning. Differently from [19], our proposal does not enforce any con-
straint on the input data being it suited for image sequences, for uncorrelated stereo pairs as
well as for scenes containing moving objects.

3.1 Confidence measures for label selection
In this section we review the confidence measures adopted by our method. We carefully
selected them according to the voting technique deployed to generate labels, explained in
detail in section 3.2. Given the cost curve provided by a stereo algorithm for a pixel p(x,y),
the chosen confidence measures process (a subset of) cues such as the minimum cost c1(p)≡
c1(p,d1(p)) at disparity hypothesis d1(p), the second smallest local minimum as c2m(p) ≡
c2m(p,d2m(p)) at disparity hypothesis d2m (and, in general, the cost for a certain disparity
hypothesis d as cd(p)), the disparity value D(p) assigned by winner-takes-all strategy to p
and its corresponding pixel on the right image referred to as p′, having disparity DR(p′). We
denote as Np a squared patch centered on pixel p (of size 25×25 in our experiments).

• Average Peak Ratio (APKR) [12]: computed by processing the ratio between
c(q,d2m(p)) and c(q,d1(p)), averaged on a squared neighborhood.

APKR(p) =
1
|Np| ∑

q∈Np

c(q,d2m(p))
c(q,d1(p))

(1)

• Left-Right Consistency (LRC) [10, 22]: obtained by comparing the disparity of pixel
p with the corresponding point p′ on right disparity map.

LRC(p) =
{

0, if D(p) 6=DR(p′)
1, otherwise (2)

• Median deviation of disparity (MED) [31]: represents the difference between dis-
parity D on pixel p and the median disparity computed on a squared neighborhood:

MED(p) =
{

0, if D(p) 6= medianNp(D(p))
1, otherwise (3)

• Uniqueness Constraint (UC) [2]: a binary measure that encodes with low confidence
points colliding on the same pixel p′ in the right image thus violating the uniqueness
constraint:

UC(p) =
{

0, if p ∈ Q
1, otherwise (4)

being Q the set of pixels matching the same point on the right image.

• Winner Margin (WMN) [10, 22]: obtained by processing the difference between
local minimum c2m and minimum cost c1, normalized by the sum of costs over the
entire disparity range.

WMN(p) =
c2m(p)− c1(p)

∑d cd(p)
(5)
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• Distance to Left Border (DLB) [20]: distance from the left border of the image,
thresholded to the maximum disparity value Dmax set for the stereo algorithm:

DLB(p) =
{

0, if x <Dmax
1, otherwise (6)

3.2 Label selection strategy
Given a disparity map D generated by a stereo algorithm, we want to reliably assign on
subset of points labels L = {L0,L1} standing, respectively, for wrong and correct. From
each of the confidence measures previously described, we obtain a map C assigning values
∈ [0,1] to each point ∈ D. We define two sets of points C0 and C1 one for each label L0 and
L1. For binary confidence measures we simply assume as correct points p with C(p) = 1 and
as wrong those with C(p) = 0 while for the others the choice is made by sorting all points
∈ D in ascending order of confidence and then defining the two sets as:

C0 = {p ∈ D|0≤ C(p)≤ δ0}, C1 = {p ∈ D|1−δ1 ≤ C(p)≤ 1} (7)

with (δ0,δ1) representing portions of the entire disparity map, corresponding to the least
(C0) and most (C1) confident pixels. For example, with (δ0,δ1) = (0.2,0.2), C0 will group
the 20% pixels having lowest confidence value and C1 the 20% having highest scores.

By following this strategy for each C in a pool P = {C′,C′′, ..} of confidence measures,
we obtain two ensembles P0 = {C′0,C′′0, ...} and P1 = {C′1,C′′1, ...} for the two labels L0
and L1. We combine the different labeling hypothesis ∈ P provided by the measures to
obtain the final sets G0, G1 as follows:

G0 =
⋂

Ck∈P0

Ck
0, G1 =

⋂
Ck∈P1

Ck
1 (8)

According to this strategy, in order to reduce false positives and negatives originated by
each single measure, only pixels classified by all the confidence measures as either correct
or wrong are used for labeling. On the other hand, this conservative strategy also reduces the
amount of pixels for which our method provides labels. Our conservative selection strategy
aims at obtaining very accurate labels comparable to those provided by GT data.

4 Experimental Results
In this section, we assess1 the effectiveness of our proposal with three datasets and three
stereo algorithms by training three state-of-the-art confidence measures with the labels gen-
erated by our method, the ones generated by SELF [19] as well as using ground-truth data
and comparing their performance by means of ROC analysis. Regarding the datasets, we
consider KITTI 12 [6], KITTI 15 [17] and MIDD 14 [28]. As confidence measures we
choose the three top-performing methods known in literature: O1 [24], CCNN [25] and
PBCP [29]. The choice of these measures was driven by their effectiveness with respect to
all other machine learning approaches. In particular, all of them proved to outperform the
work of [20]. Concerning the stereo algorithms, we consider three approaches characterized

1For SELF [19], O1 [24], CCNN [25] and MC-CNN [32] we used the code available in the authors’ web site
while for PBCP [29], CENSUS and SGM we implemented them following the description available in each paper.
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KITTI 12 CENSUS MC-CNN SGM
Method A D / D∩GT A D / D∩GT A D / D∩GT

SELF [19] 88.9% 33.8% / 38.0% 85.4% 29.4% / 30.7% 81.3% 21.5% / 23.2%
Prop. 98.5% 8.4% / 12.5% 97.0% 12.4% / 13.3% 88.6% 12.5% / 14.6%

Table 1: Analysis of training labels inferred on 8 sequences of KITTI 12. For SELF [19]
and our proposal we report the accuracy A for the predicted labels (computed for points
with available ground-truth), the average density D on the 8 sequences, the intersection be-
tween the density of labels inferred by the two methods and the 8 images with ground-truth
(D∩GT). The average density of KITTI 12 ground-truth data on the 8 images is 19.5%.

by different performance. The popular, yet not very effective, block matching algorithm,
referred to as CENSUS, aggregating costs (computed by means of Hamming distance on
census transformed images) with a 5× 5 box-filter. As representative of algorithms with
high accuracy we use MC-CNN [32], considering the matching costs computed on patches
(9× 9 on KITTI 12 and KITTI 15 and 11× 11 on MIDD 14 and using the weights pro-
vided by the authors), and SGM [9] in a eight scanlines implementation using for data term
the same CENSUS aggregated costs and for parameters P1 and P2, respectively, 0.03 and 3
(being matching costs normalized).

4.1 Evaluation protocol and training data

In this field, ROC curves [10, 22] are commonly deployed to assess how reliable is a confi-
dence measure by sorting pixels ∈ D according to their scores and computing error rates on
subsets sampled with increasing size. If sorted in descending order, an effective confidence
measure should sample correct pixels first and, then, outliers. Thus, the Area Under the
Curve (AUC) quantitatively summarizes the behavior on the entire disparity map, enabling
to compare different measures. The lower is the area, the more effective is the prediction.
The optimal AUC is obtained as ε +(1− ε) ln(1− ε), being ε the percentage of outliers in
the disparity map D.

Confidence measures are trained in most works in this field [8, 20, 24, 29, 31] by select-
ing eight stereo pairs from KITTI 12 dataset: 43, 71, 82, 87, 94, 120, 122 and 180th. These
images with ground-truth labels provide about 724K training samples. According to SELF
[19], on the extended eight sequences available on KITTI 12 corresponding to the 8 stereo
pairs 43, 71, 82, 87, 94, 120, 122 and 180th, we generate training labels following the proto-
col described by the authors. For all considered sequences there are available 21 stereo pairs,
excluding 82th containing only 16. On such 163 stereo pairs SELF extracts a huge amount
of training labels: about 25M for CENSUS, 22M for MC-CNN and 16M for SGM. For a fair
comparison, we generate labels with our method from the same sequences. However, differ-
ently from SELF, we point out that our method is not constrained to sequences but we use for
the aforementioned reason the same input data to generate our training labels. In fact, taking
the same number of stereo pairs from different scenes would favour our approach making
the comparison unfair. Overall, our framework provides from the eight sequences about 6M
training labels for CENSUS and 9M for MC-CNN and SGM.

Despite the significantly lower amount of labels generated by our proposal with respect
to SELF, observing Table 1 we can notice that our training samples are always more accu-
rate. This fact highlights that our proposal significantly reduces the percentage of wrong
assignments to G0 and G1 trading accuracy for density. Moreover, it is worth to note that
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KITTI 12 CENSUS (ε=38.6%) MC-CNN (ε=16.9%) SGM (ε=9.1%)
measure GT [19] Prop. GT [19] Prop. GT [19] Prop.
O1 [24] 0.116 0.165 0.163 0.025 0.046 0.042 0.016 0.031 0.022

CCNN [25] 0.118 0.250 0.128 0.028 0.089 0.029 0.032 0.084 0.023
PBCP [29] 0.125 0.201 0.138 0.029 0.044 0.040 0.029 0.037 0.035
APKR [12] 0.166 0.048 0.030

opt. 0.094 0.017 0.005
KITTI 15 CENSUS (ε=35.4%) MC-CNN (ε=15.4%) SGM (ε=13.7%)
measure GT [19] Prop. GT [19] Prop. GT [19] Prop.
O1 [24] 0.109 0.172 0.147 0.031 0.059 0.046 0.021 0.038 0.027

CCNN [25] 0.113 0.266 0.120 0.036 0.102 0.035 0.044 0.072 0.029
PBCP [29] 0.122 0.209 0.151 0.035 0.053 0.047 0.031 0.035 0.037
APKR [12] 0.147 0.049 0.036

opt. 0.083 0.019 0.007
MIDD 14 CENSUS(ε=37.8%) MC-CNN (ε=26.7%) SGM (ε=26.9%)
measure GT [19] Prop. GT [19] Prop. GT [19] Prop.
O1 [24] 0.126 0.180 0.154 0.073 0.125 0.097 0.085 0.133 0.102

CCNN [25] 0.128 0.254 0.123 0.072 0.179 0.069 0.122 0.216 0.088
PBCP [29] 0.119 0.169 0.123 0.067 0.084 0.078 0.145 0.148 0.148
APKR [12] 0.137 0.074 0.100

opt. 0.090 0.046 0.045
Table 2: Average AUCs on the 3 datasets (from top to bottom: KITTI 12, KITTI 15 and
MIDD 14). Evaluation of the 3 confidence measures with 3 algorithms (CENSUS, MC-
CNN, SGM), trained on ground-truth data (GT), on labels obtained by SELF [19] and by
our proposal. We also include in the table a single AUC for each algorithm concerned with
APKR not affected at all by training labels. We also report the average error ε on each
dataset computed with error bound set to 3, for KITTI datasets, and set to 1 for MIDD 14.

KITTI 12 provides, on the 8 images, ground-truth labels only for 19.5% of points. On the
8 sequences SELF always generates a larger percentage of labels, parameter D in the table,
compared to our method. We can also notice from D∩GT that our method selects a larger
percentage of points not overlapping with ground-truth data with respect to SELF. This fact
potentially allows us to include more points in regions not covered by LIDAR as shown in
Figure 1 in the left and upper side of the disparity map. Moreover as reported in Figure 2,
we observed that with respect to our proposal SELF provides a limited amount of correct
samples for farther points in the disparity map. All these facts might explain the overall best
performance of our strategy and why, in some circumstances, it allows us to achieve more
accurate results with respect to deploy ground-truth labels for training confidence measures
as will be detailed in the next section.

4.2 Quantitative evaluation and analysis of training data

In this section we exhaustively compare our proposal with SELF [19] on three datasets KITTI
12, KITTI 15 and MIDD 14 and three algorithms for training the three state-of-the-art con-
fidence measures O1 [24], CCNN [25] and PBCP [29] trained on labels inferred from eight
sequences belonging to KITTI 12.

Moreover, we compare the performance of the same confidence measures trained on
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Figure 2: Distribution of training labels with SGM for SELF [19] in blue and the proposed
method in green. In red the distribution of GT labels, independent of the stereo algorithm.
(Top) Distribution of correct and (bottom) wrong labels within the disparity range.

labels extracted from the corresponding eight stereo pairs with ground-truth data available
in KITTI 12. Detailed experimental results are reported in Table 2. We include in our
evaluation APKR [12], the most effective confidence measure within the pool of confidence
measures deployed for selecting labels as described in Section 3.1. Being such method
independent of the training labels we report in the table a single AUC for APKR. On KITTI
12, our proposal always enables more effective training of confidence measures with respect
to SELF. In particular, with CCNN and in most cases with PBCP, our method performs much
better. Confidence measures trained with our method are more reliable than APKR in 8 out
of 9 times while SELF yields better results only in 3 out of 9 times. Compared to training
confidence measures on GT labels, SELF is always less reliable while our proposal with
SGM and CCNN yields significantly better results. It is worth to note that, although the
accuracy of our labels is higher compared to SELF, the amount of samples provided by our
method for training is much lower.

The cross validation on KITTI 15 shows that our method is always more effective than
SELF. Similarly to the results reported for KITTI 12, the validation on KITTI 15 high-
lights that CCNN has better performance when trained with our labels with respect to train
on SELF. This trend is also confirmed with PBCP in many cases. APKR achieves better
AUCs compared to our method in 2 out of 9 cases while SELF in 8 out of 9 cases. Com-
pared to training on GT labels, our proposal enables to achieve better results in two cases
(with CCNN) while SELF never yields better confidence estimation. The cross validation
on MIDD 14 highlights, once more, that our self-labeling approach outperforms SELF ex-
cluding the test with CCNN trained on labels generated with SGM where the two methods
have equivalent performance very similar to the AUC obtained training on GT labels. Com-
pared to APKR, our method is better in 4 out of 9 situations (with any stereo algorithm
training CCNN and, with CENSUS, training PBCP) while SELF is always outperformed by
this method. Moreover, we point out that CCNN trained with our proposal yields always
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Figure 3: Qualitative results with the SGM algorithm on frame 000006 belonging to KITTI
12. At the top, from left to right, reference image, disparity computed by SGM and GT. At
the bottom, we report for O1 [24] confidence maps obtained, from left to right, training on
GT data, SELF [19] and the proposed method.

to more accurate results with respect to training on GT labels while this fact never holds
for SELF. The experimental results reported in Table 2 confirm that our proposal enables
more effective training of confidence measures with respect to SELF as well as to a better
generalization to new data. Moreover, training on labels generated by our method allows
us, in most cases, to obtain confidence measures (in particular with those based on CNNs,
CCNN and PBCP) with performance comparable, and sometimes even better, than training
the same measures on ground-truth labels. In Figure 2 we compare the distribution of correct
and wrong training labels obtained by SELF and our proposal with KITTI 12. We also report
the distribution of GT data. Observing the figures we can observe that our method gener-
ates training labels more similar to GT data. Moreover, we can notice how SELF provides
very few positive labels for higher and lower disparity values especially dealing with correct
labels. Figure 3 shows qualitative results for O1 confidence measure and SGM algorithm,
obtained by training the measure on data from GT, SELF and our method. Finally, exclud-
ing disparity and confidence computation, on a i7 CPU, with our method we automatically
extracted the training samples from 163 images of KITTI 12 in 76 seconds.

5 Conclusions
In this paper we have proposed a novel self-supervised strategy to train confidence measures
based on machine-learning. Compared to state-of-the-art methods our proposal is more gen-
eral and neither constrained to image sequences nor to scene content. It generates training
labels by leveraging on a pool of appropriately combined conventional confidence measures.
The experimental results reported confirm that our strategy improves state-of-the-art by se-
lecting more accurate labels thus enabling better confidence estimation when training confi-
dence measures based on machine-learning on self-generated data. Moreover, in particular
with CNN-based confidence measures, it also provides competitive results with respect to
ground-truth. This fact confirms our method can be deployed to train confidence measures
from unlabeled stereo pairs, a circumstance frequently occurring in practical applications.
Future work is aimed at further improving the proposed labeling selection strategy.
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