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Updates

e July 25t 2010: Linux and Windows implementations of the
Fast Bilateral Stereo algorithm available at:
www.vision.deis.unibo.1t/smatt/fast bilateral_stereo.htm

e« April 20th, 2010: included descriptions and experimental
results for papers [67], [68], [69]
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http://www.vision.deis.unibo.it/smatt/fast_bilateral_stereo.htm
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Introduction to stereo vision
Overview of a stereo vision system
Algorithms for visual correspondence
Computational optimizations

Hardware implementation

Applications
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What 1s stereo vision ?

Is a technique aimed at iInferring depth
from two or more cameras

Wide research topic In computer vision
This seminar 1s concerned with

* binocular stereo vision systems

« dense stereo algorithms

« stereo vision applications

Emphasis 1Is on approaches that are (or
might be hopefully soon) feasible for
real-time/hardware implementation
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Applications

Wwww.nasa.gov Wwww.nasa.gov
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www.vision.deis.unibo.i1t/smatt/stereo

www.vislab.it

Stefano Mattoccia



Commercial (binocular) stereo cameras

»
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FPGA www . valdesystems.com
T

www.videredesign.com

www . Focusrobotics.com

www . ptgrey.com www . nvela.com www . minoru3dwebcam.com
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Single camera

« Both (real) points (P and Q)
project into the same 1mage

point (p = q)

Q //, « This occurs for each point
P along the same line of sight

 Useful for optical i1llusions.

n: 1mage plane

O: optical center

Courtesy of http://www.coolopticalillusions.com/
Stefano Mattoccia



Stereo camera

OR
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With two (or more) cameras we can infer depth, by means of
triangulation, 1f we are able to find corresponding

(homologous) points In the two Images
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How to solve the correspondence problem ?

2D search domain ?

No!! Thanks to the
epipolar constraint

Reference (R) Target (T)
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Epipolar constraint

S
rd

OT
Reference R Target T
« Consider two points P and Q on the same line of sight of

the reference 1Image R (both points project iInto the same
image point p=q on image plane =, of the reference iImage)

« The epipolar constraint states that the correspondence for
a point belonging to the (red) line of sight lies on the
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Stereo camera 1n standard form

R
Reference R Target T

Once we know that the search space for corresponding points
can be narrowed from 2D to 1D, we can put (virtually) the
stereo rig iIn a more convenient configuration (standard
form) - corresponding points are constrained on the same
image scanline
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- |G e
Stereo pair in standard form

Cameras are “perfectly” aligned
and with the same focal length
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Disparity and depth
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With the stereo rig 1In standard form and by considering
similar triangles (POL0; and Ppp7):

b (b+x)—x, b-f Db-f
- = Z: =
Z—f > X —% d

Z
Xg —X; 1s the disparity
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Disparity and depth
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The disparity i1s the difference between the x coordinate of
two corresponding points; i1t 1s typically encoded with
greyscale i1mage (closer points are brighter).

Reference Target Disparity map

Disparity is higher for points closer to the camera
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Range field (Horopter)

Given a stereo rig with baseline b and focal length f, the
range Tield of the system i1s constrained by the disparity

range [d ;.. d..J-

Horopter

b- f

dmin
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e Depth measured by a stereo vision system iIs discretized
into parallel planes (one for each disparity value)

e A better (virtual) discretization can be achieved with
subpixel techniques (see Disparity Refinements) Stefano Mattoccia
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e The range field (horopter) using 5 disparity values
[dmin’ dmin+4]
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b-f

b-f
A+d . +4

= Using 5 disparity values [A+d;,,A+d;,t4]

min?

e« With A>0, horopter gets closer and shrinks (depth
and obviously area/volume)

A+d

in
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Overview of a stereo vision system

r- T T =

\

—

Stereo pair

Rectified stereo pair

Disparity map

Triangulation K

Depth map PC, FPGA

Intrinsic

— = and extrinsic

parameters
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Offline procedure aimed at finding:

e Intrinsic parameters of the two cameras
@Eﬁ!! (focal length, image center, parameters
' of lenses distortion, etc)

e Extrinsic parameters

y (R and T that aligns the two cameras)

Rectification

Triangulation

100 200 300 400

Calibration is carried out acquiring and
processing 10+ stereo pairs of a known
pattern (typically a checkerboard)
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OpenCV [39] and
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Rectification

Using the information from the calibration step:

a) removes lens distortions

!%ﬁ!%ﬂ

_ b) turns the stereo pailr in standard form
| s
\%

Rectification

Triangulation

&

Stereo camera 1In
standard form
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Aims at finding homologous points i1In the
stereo pair.

-——

EI
e

Rectification

Triangulation

disparity map

This topic will be extensively analyzed i1In
the next slides. ..

Stefano Mattoccia



Triangulation

Given the disparity map, the baseline and the
Focal length (calibration): triangulation computes

!E?}E the position of the correspondence 1In the 3D space
£ N!E%ﬁ!
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Rectification
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disparity map f depth map

Stefano Mattoccia



Datasets: stereo sequences

Sequences acquired with stereo cameras are available at:

http://www.vision.deis.unibo.1t/smatt/stereo.htm

The datasets include:
e calibration parameters
e original sequences
e rectified sequences

e disparity maps

Stefano Mattoccia
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Archirtectures

« Microprocessors
- Floating Point (FP) units + SIMD
- C/C++ (+ assembly)
- power,cost and size are the main drawbacks

« Low power & low cost processor
- C/c++
- no FP
- no SIMD (often)

« GPUs (Graphic Processing uUnits)
— raw power
- high power dissipation and cost
- programming is difficult (CUDA and OpenCL help)

« FPGA (Field Programmable Gate Array)
- efficient, low power (<1 W), low cost
- programming language: VHDL
- coding i1s difficult and tailored for specific devices

Stefano Mattoccia



Why 1s stereo correspondence so challenging ?

s

Next slides show
common pitfalls..
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Photometric distortions and noise
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Foreshortening

Uniqueness constraint ? :-( Stofane Matioceia



Perspective distortions

Uniform/ambiguous regions
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Repetitive/ambiguous patterns

How to reduce ambiguity... ?
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Transparent objects

Occlusions and

e 'J :
g STRATION
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Occlusions and discontinuities 2/2

Digital
fundamentals

SAF EES oo : > s
Reference Target

Digital
fundamentals
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Middlebury stereo evaluation

The Middlebury stereo evaluation site [15] provides a framework
and a dataset (showed 1In the next slide) for benchmarking
novel algorithms.

Scharstein and Szeliski provide:

< a methodology for the evaluation of (binocular)
stereo vision algorithms [11]

e datasets with groundtruth [11,15,17,18,19]

e online evaluation procedure and ranking [15]

Datasets (with groundtruth) of stereo pairs affected by
photometric distortions are also available In [15].

[15] D. Scharstein and R. Szeliski, http://vision.middlebury.edu/stereo/eval/

[11] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms”
Int. Jour. Computer Vision, 47(1/2/3):7-42, 2002
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http://vision.middlebury.edu/stereo/eval/

Middlebury dataset (2003) [15]

Tsukuba, Venus, Teddy and Cones stereo pailrs

[15] D. Scharstein and R. Szeliski, http://vision.middlebury.edu/stereo/eval/
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The correspondence problem

According to the taxonomy proposed iIn [11] most stereo
algorithms perform (subset of) these steps:

1) Matching cost computation
2) Cost aggregation
3) Disparity computation/optimization

4)Disparity refinement

Local algorithms perform:
1 = 2 = 3 (with a simple Winner Takes All (WTA) strategy)

Global Algorithms perform:
1 (= 2) =3 (with global or semi-global reasoning)

Stefano Mattoccia



Pre-processing (0)

Sometime i1s deployed a pre-processing stage mainly to
compensate for photometric distortions.

Typical operations include:

e Laplacian of Gaussian (LoG) filtering [41]

e Subtraction of mean values computed In
the neighbours of each pixel [42]

e Bilateral filtering [16]

[41] T. Kanade, H. Kato, S. Kimura, A. Yoshida, and K. Oda, Development of a Video-Rate Stereo Machine
International Robotics and Systems Conference (IROS '95), Human Robot Interaction and Cooperative Robots, 1995

[42] O. Faugeras, B. Hotz, H. Mathieu, T. Viville, Z. Zhang, P. Fua, E. Thron, L. Moll, G. Berry,
Real-time correlation-based stereo: Algorithm. Implementation and Applications, INRIA TR n. 2013, 1993

[16] A. Ansar, A. Castano, L. Matthies, Enhanced real-time stereo using bilateral filtering
IEEE Conference on Computer Vision and Pattern Recognition 2004
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The simplest (nhaive and unused) local approach:

Reference (R) Target (T)

h X - h X X+dmax =
A A
H i H
------------------ T
p. .21 L2 epipolar
= line
A
NS /%%é%é/
v v
Reference (R) Target (T)
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e matching cost (1): pixel-based absolute difference
between pixel iIntensities

e disparity computation (3): Winner Takes Al (WTA)

4

»

1o (%, Y) =15 (x+d,y)

oV

0 dmax
Winner d*

Reference Groundtruth Result
(disappointing)
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How to improve the results of the naive approach ?

Basically exist two different (nhot mutually exclusive)
strateglies:

 Local algorithms use the simple WTA disparity selection
strategy but reduce ambiguity (increasing the signal to
noise ratio (SNR)) by aggregating matching costs over a
support window (aka kernel or correlation window).
Sometime a smoothness term is adopted. Steps 1+2 (+ WTA)

« Global (and semi-global*) algorithms search for disparity
assignments that minimize an energy function over the whole
stereo pair using a pixel-based matching cost (sometime the
matching cost 1s aggregated over a support). Steps 1+3

Both approaches assume that the scene 1s piecewise
smooth. Sometime this assumption i1s violated...

This hypothesis i1s implicitly assumed by local
approaches while 1t i1s explicitly modelled by
global approaches

* subset of the stereo pair
Stefano Mattoccia



Local approaches:

In order to increase the SNR (reduce ambiguity) the
matching costs are aggregated over a support window

Reference (R) Target (T)

Global (and semi-global*) approaches:

Many algorithms search for the disparity assignment that
minimize a certain cost function over the whole* stereo

pair
E (d) — Edata (d )+ Esmooth (d )

. i}
subset of the stereo pair Stefano Mattoccia



Matching cost computation (1)
1:(X,Y) 1.(X,Y)

Pixel-based matching costs
e Absolute differences
R T

e(X1y1d):“R(X’y)_IT(X+d1y)‘

e Squared differences

e(x,y,d)=(I(x, y) =1, (x+d,y))

e Robust matching measures (M-estimators)
e Limit influence of outliers

e Example: truncated absolute differences (TAD)

e(x,y,d)=min {l,(x,y)= I, (x+d,y)T}

Stefano Mattoccia



e Dissimilarity measure insensitive to image sampling
(Birchfield and Tomasi [27])

BT helps at depth and color
discontinuities

Reference (R) Target (T)

CN) I (% +d,Y)

I (Xz,Y)

v

Xe—1 | Xg+1 X, +d -1 ; Xy +d+1

e(X, y,d)=mind  min  |1o(xs,y)- Iy min |1 (¢ +d,y) =15 (x, )

Xp ——SXSXgp+— X ——<x<x +—
R™H R™TH R™5 R
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The Disparity Space Image (DSI) is a 3D matrix (WxHx(d, .—d.:,)

c(x,y,d)

likelthood/confidence
of each correspondence

Each element C(X,y,d) of the DSI represents the cost of
the correspondence between 1;(Xz,y) and 1-(Xz+d,y)

Stefano Mattoccia



Area-based matching costs:

e Sum of Absolute differences (SAD)
C(x,y,d)= > [lg(x, y) = 1; (x+d, )

XeS

e Sum of Squared differences (SSD)
C(x,y,d)=> (I(x,y) = 1; (x+d,y))

xeS

e Sum of truncated absolute differences (STAD)

C(x,y,d)=>"min{l(x,y) I, (x+d,y),T}

xeS .
Stefano Mattoccia



Normalized Cross Correlation [57]

Zero mean Normalized Cross Correlation [58]

Gradient based MF [59]

Non parametric [60,61]

Mutual Information [30]

Stefano Mattoccia



Cost aggregation (2)

Let’s start by examining the simplest Fixed Window (FW)
cost aggregation strategy (TAD, disparity selection WTA)

Reference (R)

Groundtruth Fixed Window (FW)

What”s wrong with FW ?

Stefano Mattoccia



FW (with WTA reasoning) fails 1In most points for the
following reasons:

Reference (R) Target (T)
a) implicitly assumes frontal-parallel surfaces
b) 1gnores depth discontinuities

c) does not deal explicitly with uniform areas

d) does not deal explicitly with repetitive patterns

Stefano Mattoccia



a) FW implicitly assumes frontal-parallel surfaces

1

z

FW

front view

S

Z

FW

x

front view

X

X

Z

X
Ideal

N

front view

Z

Ideal

front view

Nevertheless, almost all state-of-the-art cost aggregation
strategies rely on the assumption that all the points
belonging to the support share the same disparity (only few

exceptions).
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b) FW i1gnores depth discontinuities

Implicitly assuming frontal-parallel surface In the real
scene 1s violated near depth discontinuities.

Background 1is
misaligned !

Aggregating the matching costs of two populations at
different depth (aligned foreground and misaligned

background (outliers)) results 1In the typical i1naccurate
localization of depth borders.

-V,

Robust matching measures (TAD) can partially reduce the
influence of outliers

Stefano Mattoccia



State-of-the-art cost aggregation strategies aim at shaping
the support in order to include only points with the same
(unknown) disparity.

Ideal

For what concerns FW: decreasing the size of the support
helps 1n reducing the border localization problem.

However, this choice renders the correspondence problem more
ambiguous (especially when dealing with uniform regions and
repetitive patterns, see the next slide).

In practice, for the FW approach the choice of the optimal
size of the support i1s done empirically.

Stefano Mattoccia



FW does not deal explicitly with ambiguous regions -
uniform areas c) and repetitive patterns d)

Ideal

|
Ideal

In both cases an i1deal cost aggregation strategy should
extend 1ts support i1n order to include as much points at
the same (unknown) depth as possible.

Stefano Mattoccia



Quite surprisingly, 1n spite of 1ts limitations, FW 1s widely
adopted i1n practice (probably 1t 1s the most frequently used
algorithm for real applications).

e Easy to implement

e Fast, thanks to incremental calculation schemes

e Runs 1In real-time on standard processors (SIMD)

e« Has limited memory requirements

e Hardware implementations (FPGA) run iIn real-time
with BTimited power consumption (<1W)

Before analyzing more sophisticated approaches let’s consider
two optimization techniques used by FW and other algorithms:

e Integral Images (11)
e Box-Filtering (BF)

Stefano Mattoccia



Optimization: Integral Images
(aka Summmed Area Table)

X

1(X,Y)

I~

~
~
~

N
N

W 4
S(xy)= 2 1(.])
e Straightforward extension to stereo <X, j<y
(2 images) S%(x,y)= Z|2(i,j)
<X, J<y

[43] F. Crow, Summed-area tables for texture mapping, Computer Graphics, 18(3):207-212, 1984

Stefano Mattoccia



Optimization: Box-Filtering 1/2

Left ) 2n+1 - 2n+1 Right
T
I+
N
Y < 2 Y I_S:
- =
y+1 y+1 .
v
v
v v
X x+d

SAD (x,y,d)= > |L(x+ jy+i)—R(x+d+ j,y+i)

i,j=—n

SAD(x,y+1,d)=SAD(x,y,d)+U(x,y+1,d)

n

U(x y+Ld)= YL+ j,y+n+)—Rex+d +j,y+n+D)| — | D Lo+ ], y=n)-R(x+d+j,y—n)

j=-n

j=n

[44] M. Mc Donnel. Box-filtering techniques. Computer Graphics and Image Processing, 17:65-70, 1981
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Optimization: Box-Filtering 2/2

SAD(x,y+1,d)=SAD(x,y,d)+U(x,y+1d)

n

U(x, y+Ld)= D |L(X+j, y+n+D)—R(x+d+j,y+n+1) —

j=-n

Lef'l' | 2n+1
yn <~ EEEEE]
Y 3
y+1
v
y+n+1 D C
' I
x-n-1 X X+n

U(x,y+1d)=U(x-1y+1d)+

delfo.d, ]

n

j=-n

D L(x+j,y—m—R(x+d+j,y—n)

« 2n+1 R Right
y-n B' 4
Y < 5
Y+l a
y+n+1 D' C' v
v l
x+d-n-1 x+d x+d+n
|A- Al-|B-B]|+|C-C1-|D-D]

SAD(x,y+1,d)=SAD(x,y,d)+U(x-1y+1d)+|A- A

\—\B—B'\+\C—C'\—\D—D'\
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Box-Filtering Vs Integral Images

- Both require 4 operations per point

- Integral images can handle supports of different size

Integral Images has overflow i1ssues
(for example, with Int32 and S? = WxH<256x256)

Integral images i1s more demanding in terms of memory
requirements. For single i1mages:

WxHxsizeof(data type) Vs = Wxsizeof(int32) for S2

In practice, integral images may be convenient when
supports of different size are required.

Extension of box-filtering to more complex shapes was
proposed in [47].

Stefano Mattoccia



Optimizations:
Single Instruction Multiple Data (SIMD)

a

Op

b

Scalar computation 1 Op

It’s a computation paradigm that that allow for processing
with the same operation multiple data 1n parallel.

A
Op
B

AANAANANAANANAANANAANNANANA
17T 1T 1T 1T 1 1T 1T 17T 17T 1T 17T 1T 11 SIMD
P !r *r +r *+r * °+r 00 °r 1 1 1 1~ 1.1 16 Ops in
P r ++ 1 1 1 v b °r 1+ 1 1 1 1 1 1 parallel !
MPm 1 1 1 1 1 P !r 1 1 1 1 1 1~ 1 1
VVVVVVVVVVVVVVVYV

Several computer vision algorithms are suited for SIMD

SIMD features are available 1n most current processors

Intel processors SIMD available since Pentium (MMX)

SIMD mapping is difficult (assembly)
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Live DEMO
Single Matching Phase Algorithm [48,49]

< Image type: grayscale

e Preprocessing: subtraction of mean values

e Matching cost (Step 1): Absolute Differences

e Aggregation strategy (Step 2): FW

e Disparity selection (Step 3): WTA

e OQutlier detection: efficient strategy (later, Step 4)
e Discards uniform areas: yes, analyzing image variance
e Optimizations: box-filtering + SIMD instructions (SSE)
e Sub-pixel interpolation up to 1/16 of pixel (later)

e Runs 1n real-time on a standard PC

[48] L. Di Stefano, M. Marchionni, S. Mattoccia, A fast area-based stereo matching algorithm
Image and Vision Computing, 22(12), pp 983-1005, October 2004

[49] L. Di Stefano, M. Marchionni, S. Mattoccia, A PC-based real-time stereo vision system

Machine Graphics & Vision, 13(3), pp. 197-220, January 2004 _
Stefano Mattoccia



How far can we go with more effective
(frontal parallel) cost aggregation strategies ?

We made an experiment computing i1deal frontal parallel
supports using the ground truth.

With 43x43 max support, TAD and a WTA strategy:

Results (errors in red)

!

There 1s room for Improvements...

Stefano Mattoccia



e Compared to pixel-based approaches the support aggregation
(potentially) allows for Improving robustness

« An i1deal (frontal parallel) cost aggregation strategies
should include i1n the support only points with similar
disparity:

e expanding In regions at similar depth (left)

e shrinking near depth discontinuities (right)

Stefano Mattoccia



What about symmetric/asymmetric support,
discontinuities and occlusions ?

e (Unknown) Occlusions and discontinuities play a central
role for support aggregation strategies. The next slides
depict relevant cases using a simple object laying on a
planar background

e Occlusions and discontinuities are strictly related

Stefano Mattoccia



Case 1: no half occlusion, no discontinuity

Stefano Mattoccia



Case 2: near half occlusion vs iInside discontinuity

Stefano Mattoccia



Case 3: iInside half occlusion vs any -> depth = occlusion !!
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Case 4: near half occlusion vs near discontinuity

Stefano Mattoccia



Case 5: no half occlusion, no discontinuity

Stefano Mattoccia



Case 6: near discontinuity, near occlusion

Stefano Mattoccia



Case 7: 1nside discontinuity, near occlusion
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Case 8: near discontinuity, no occlusion no discontinuity

Stefano Mattoccia



= occlusion

-> depth

de occlusion vs any

INSI

Case 9
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Case 10: near occlusion and discontinuity vs near discontinuity

Stefano Mattoccia



Case 11: near discontinuity vs near discontinuity

Stefano Mattoccia



Case 12: near discontinuity vs near discontinuity and occlusion

Stefano Mattoccia



Classification and evaluation of cost
aggregation strategies for stereo correspondence
e In [1] we classified, implemented and evaluated (accuracy

and execution time) 10+ state-of-the-art cost aggregation
strategies

e Since the focus i1s on the cost aggregation strategy the
evaluation methodology includes only DISC and NON_OCC

[ 1] F. Tombari, S. Mattoccia, L. Di Stefano, E. Addimanda, Classification and evaluation of cost aggregation methods for
stereo correspondence, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR 2008)

Accompanying web site and software: www.vision.deis.unibo.it/spe/SPEHome.asp
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Analyzed a subset of relevant state-of-the-art cost
aggregation strategies

e position

e shape

e position and shape
e weights

Most of these technigues compute the support using a
symmetric strategy

Benchmarking platform: Intel Core Duo 2.14 GHz CPU

Execution time: Teddy stereo pair (size 450x373) with
and a disparity search range of 60.

Optimizations: the same proposed by authors*, no SIMD,
no multicores, etc

The next slides describe most of these methods and some
novel approaches not included in the paper (i.e. Fast
Aggregation [64], Fast Bilateral Stereo (FBS) [65] and
the Locally Consistent (LC) methodology [66])

Stefano Mattoccia



Fixed Window: results
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Shiftable Windows [11]

e This approach aims at reducing the border localization
problem of FW not constraining the support to be centered
on the central position

e Support 1Is symmetric

e Execution time: 12 sec

The position with the best score

|| N NN | | M
v, A P Is selected
‘R
|| __II _II_ II__ [
R
::II ::H:: II::
N 11 I.I 11 .
" : "\
| ::;:: ||

[11] D. Scharstein and R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms

Int. Jour. Computer Vision, 47(1/2/3):7-42, 2002 _
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Shiftable Windows: results

Stefano Mattoccia



Multiple Windows [7]

The number of elements 1In the support 1Is constant

The shape of the support 1s not constrained to be rectangular
Support i1s symmetric

Proposed for 5, 9 and 25 sub-windows (5W, 9W and 25W)

Execution time (OW): 11 sec (*)
With 9 sub-windows (9W):

=+« oo or [ R NN N D N RS
[ 1

according to the matching cost computed
S over the single sub-windows

[7] H. Hirschmuller, P. Innocent, and J. Garibaldi, Real-time correlation-based stereo vision with reduced border errors
Int. Journ. of Computer Vision, 47:1-3, 2002

CH+n
LT



T

Support: some shapes (with 9 sub-windows)
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Multiple (9) Windows: results
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Variable Windows [12]

Pixel-based cost function: Birchfield and Tomasi

Size of the support varies while shape i1s constrained (square)
Position of the support changes (shiftable windows)

Support i1s symmetric

Efficient search based on a DP technique

Execution time: 16 sec (good trade-off speed/accuracy)

[12] O. Veksler, Fast variable window for stereo correspondence using integral images

In Proc. Conf. on Computer Vision and Pattern Recognition (CVPR 2003), pages 556-561, 2003 _
Stefano Mattoccia
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windows in uniform areas
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d

a, B,y - parameters of the algorithm
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Variable Windows: results
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Segmentation

ww W
f’gl I@

Original Segmented [50]

e Partitioning of the image 1In regions made of connected
pixels with similar colors iIntensity

e Useful i1n stereo for cost aggregation, disparity refinement,
outliers detection, etc

[50] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space analysis
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:603-619, 2002
Stefano Mattoccia



Segmentation based [5]

Assumption: depth within each segment varies smoothly

Segmentation of reference image (Not Symmetrical)
Shape and size unconstrained (within max support)

Pixel-based cost function: M-estimator
Requires explicit segmentation

Each cost i1s weighted 1 (same segment) or
A<<1l (different segment)

Execution time: 2 sec (fast)

[5] M. Gerrits and P. Bekaert, Local Stereo Matching with Segmentation-based Outlier Rejection

Proc. Canadian Conf. on Computer and Robot Vision, 2006 _
Stefano Mattoccia



>
>
>

R T

For each point within the maximum allowed support:

e points within the same segment of the central point
(reference i1mage) assume weight 1

e points outside are weighted A<<1

Stefano Mattoccia



Segmentation based: results

Stefano Mattoccia



Bilateral Filtering [51]

e Edge preserving smoothing technique

e In the sum each element i1s weighted
according to i1ts spatial and color
proximity (wrt the central point)

0 g o

Weight function

 Implicitly deploys “a sort of segmentation’

Original Conventional Bilateral
image smoothing Filtering

[51] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In ICCV98, pages 839-846, 1998

Stefano Mattoccia



Adaptive Weights [14]

Costs are symmetrically weighted |
by spatial and color proximity
Implicitly deploys a “sort of
segmentation’ i

Pixel-based cost function: TAD
Symmetric support
Execution time: 17 minutes (very slow)

ﬁ
IWJT‘ :

R T

Simplified example (using only color proximity)

[14] K. Yoon and |. Kweon. Adaptive support-weight approach for correspondence search IEEE PAMI, 28(4):650-656, 2006

Stefano Mattoccia



> w,(p;, pe)-w,(a;,9,)- TAD(p;, g;)
C(p,.q, )= 2=
) Zwr Pi» Pe °Wt(qi’qc)

P; eWR ,q; eWr

d (pi’pc) de (1 (P) IR (P))

We (P ;) =€ e

dp(0.0) de (1R (%).Jr ()
e Ve

Stefano Mattoccia



Stefano Mattoccia




Stefano Mattoccia




Segment Support [10]

e Segments both 1mages

e Discard the spatial proximity assumption: weights
rely only on segmentation and color proximity

e Cost function: TAD
e Symmetric support
e Execution time: 30 minutes (very slow)

Weights for reference (and target) Image are assigned
according to:

Pi Pc
(
| 1.0 for p €S, ?gcfﬁgggn:b;hat i
W (P P)= | dilia(pialp) ST oI
e & ,otherwise

\

and then combined (symmetric support)

[10] F. Tombari, S. Mattoccia, L. Di Stefano, Segmentation-based adaptive support for accurate stereo correspondence
IEEE Pacific-Rim Symposium on Image and Video Technology (PSIVT 2007)

Stefano Mattoccia



Depth borders

1A

Adaptive weights Ideal vs Segment Support

Planar regions

5 S

Adaptive weights Ideal vs Segment Support

Stefano Mattoccia



Repetitive patterns

T

Adaptive weights

Ideal vs Segment Support

Stefano Mattoccia



Segment Supports: results
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Fast Aggregation [64]
Assumption: depth within each segment varies smoothly

Cost function: TAD

Segments only the reference image R
Asymmetric support (reference image)
Support extends to the entire segment (R)

Fast: 0.6 sec (segmentation accounts for 40%-80%)

Wp
riiﬁz >

p q

[64] F. Tombari, S. Mattoccia, L. Di Stefano, E. Addimanda, Near real-time stereo based on effective cost aggregation
International Conference on Pattern Recognition (ICPR 2008)

Stefano Mattoccia



Csp(p,q’d): ZTAD(pi’qu)

piESp

CWp(p,q,d)= ZTAD(pi’qu)

pi EWp

Cw tries to avoid “segment locking”

Cw may help 1n highly textured regions (small
segments)

However, Cw may iIntroduce artifacts (discontinuities)
since aggregation i1s performed on a fixed window

Stefano Mattoccia



Fast Aggregation: results

Stefano Mattoccia



Fast Bilateral Stereo (FBS) [65]
Symmetric support

Combines accuracy of adaptive weights approaches with
efficiency of traditional (correlative) approach

Deploys a regularized range filter computed on a block
basis of size wxw

Increase noise robustness

Efficient pixel-wise cost computation by means of
integral-1mage/box-filtering schemes

Results comparable to top performing approaches
Segment Support and Adaptive Weights

Fast: 32 sec on Teddy (w=3)
Moreover, several trade-off speed vs accuracy are
feasible: 14 sec (w=5) , 9 sec (w=7), 5 sec (Ww=9)

[65] S. Mattoccia, S. Giardino,A. Gambini, Accurate and efficient cost aggregation strategy for stereo correspondence
based on approximated joint bilateral filtering, Asian Conference on Computer Vision (ACCV2009)

www.vision.deis.unibo.it/smatt/fast bilateral stereo.htm

Stefano Mattoccia


http://www.vision.deis.unibo.it/smatt/fast_bilateral_stereo.htm

e« The range filter i1s computed on a block-basis deploying
the average value within the block

e To avoid Inacc

urate localization of the discontinuities
the central point 1s kept as reference

e Spatial filter computed on block basis

w

<“—> X

A

X
+d

v

Three supports computed
by Fast Bilateral Stereo

Stefano Mattoccia
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Fast Bilateral Stereo: results (w=3, w=5)

Stefano Mattoccia



Fast Bilateral Stereo: results (w=7

Stefano Mattoccia




Locally Consistent (LC) stereo [66]

Exploits the mutual relationships among neighboring
pixels by explicitly modeling the continuity
constraints

Very accurate (significant improvements near depth
discontinuities and low textured regions)

Notable Improvements compared to state-of-the-art
approaches

Fast 37 sec™ on Teddy (unoptimized code) deploying the
disparity hypotheses provided by Fast Bilateral Stereo

Fast: 15 sec™* on Teddy (unoptimized code) deploying the
disparity hypotheses provided by Fixed Window

* significantly reduced (see next slides/ECVW 2010 paper [68])

[66] S. Mattoccia, A locally global approach to stereo correspondence, 3D Digital Imaging and Modeling (3DIM2009)

www.vision.deis.unibo.it/smatt/lc stereo.htm

Measurements performed on a 2.49GHz Intel Core Duo processor :
Stefano Mattoccia


http://www.vision.deis.unibo.it/smatt/lc%20stereo.htm

Locally Consistent stereo: results with FBS

Before (FBSigs))

After LC,, (+ FBS,y)

Stefano Mattoccia



Locally Consistent stereo: results with FW

Before (FW,)

After LC,, (+ FW,)

Stefano Mattoccia



Locally consistent (LC) stereo vs FW: details

After
LCio (+ FW,)

Stefano Mattoccia




e The next slide provides an updated quantitative
evaluation of the approaches described so far
(yellow) according to the methodology described

in [1]

e The updated evaluation i1s available online at:

http://www.vision.deis.unibo.1t/spe/SPEresults.aspx

e According to this evaluation the Locally Consistent
approach combined with the disparity hypotheses
provided by the Fast Bilateral Stereo (FBS) algorithm
outperforms the other approaches

e The FBS ranks second and provides a good trade-off
between accuracy and execution time (see the results
in the table with different parameters of the FBS
algorithm)

e In the successive slides will be described novel
approaches that rely on the LC technique (see papers

[671.[681.,[691)

Stefano Mattoccia



(Updated)Quantitative evaluation [1] (TAD)

Rank Tsukuba Tsukuba Venus Venus Teddy Teddy Cones Cones Time Teddy
Algorithm
Acc. nonocc disc nonocc disc nonocc disc nonocc disc hh:mm:ss

LocallyConsist(FBS 39(3)) 1 1.77 5.92 0.27 1.77 9.3 17.9 4.75 10.5 00:00:37
FBS 39(3) 3.13 2.95 8.69 1.15 6.64 10.7 20.8 5.23 11.4 00:00:28
Segment support 3.25 2.15 7.22 1.38 6.27 10.5 21.2 5.83 11.8 00:39:30
LocallyConsist(FW) SES) 3.07 9.63 0.66 5.11 10.6 21.8 5.3 11.6 00:00:15
FBS 45(5) 5.75 3.34 9.99 2.11 6.72 11.5 21.8 6.81 13.8 00:00:14
Segmentation based 6.75 2.25 8.87 1.37 9.4 12.7 24.8 11.1 20.1 00:05:14
Adaptive Weight 6.88 4.66 8.25 4.61 13.3 12.7 22.4 5.5 11.9 00:20:35
FBS 49(7) 7 3.99 12.3 3.01 8.42 12.3 23 7.5 15.1 00:00:09
FBS 45(9) 8.75 4.6 13.7 5.42 10.6 13.9 24.8 9.47 17.7 00:00:05
Variable Windows 11.13 3.12 12.4 2.42 13.3 17.7 25.5 21.2 27.3 00:00:26
Reliability 11.13 5.08 17.9 3.92 13.9 18.9 29.9 11.3 18.3 00:13:39
Multiple windows>* (25W) 14.5 7.57 22.7 3.91 21.1 20.9 33.2 13.7 26.9 00:00:13
Multiple windows (9W) 14.88 7.6 25.7 7.02 33 16 36.9 10.6 26.9 00:00:04
Multiple windows (25W) 15.13 7.28 25.9 6.18 29 18 35.6 11.8 27.1 00:00:14
Gradient guided 15.25 7.41 16.2 12.9 32.3 20.1 32.8 13.5 24.9 00:00:16
Multiple windows> (9W) 15.63 9.18 22.6 6.23 28.1 21.4 34.5 13.2 26.7 00:00:04
Recursive adaptive 16.38 9.66 29.8 5.94 29.8 20.1 34.6 11.7 25.3 00:20:20
Shiftable windows 16.75 9.58 14.4 9.66 16.5 23.6 31.2 24.4 33.6 00:00:05
Multiple windows (5W) 16.88 7.62 27.2 7.55 37.2 17.4 39.7 11 27.8 00:00:02
Multiple adaptive 17 11.7 27.3 11.9 13.7 20.4 31.8 15.8 25.3 02:08:17
Multiple windows>* (5W) 18.25 9.61 25.1 9.36 38.3 22.2 38 12.1 27.5 00:00:02
Max connected 21 11.8 26.4 42.5 50.9 34.5 41 17.7 22.7 01:59:09
Fixed Window (FW) 21.13 9.58 27.1 10.6 42.5 25.1 42.4 19.7 36 <1s

Oriented rod> 22.25 18.6 31.1 20.3 26.6 30.7 41.8 37.8 47.3 00:17:19
Oriented rod 22.5 14.2 25.8 21.9 29.8 37.5 48.6 48.5 55.5 00:17:00
Radial adaptive 23 14.8 21.8 22.4 40.4 49.6 50.1 50.2 53.6 01:06:21

Table available at: http://www.vision.deis.unibo.it/spe/SPEresults.aspx Stefano Mattoccia
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Disparity computation/optimization (3)

This step aims at finding the best disparity assignment (e.g.
the best path/surface within the DSI) that minimizes a cost
function over the whole* stereo pair.

In many cases the energy function has two terms:

E (d) — Edata (d )+ Esmooth (d )

- The data term E ,, measure how well the assignment fits to
the stereo pair (in terms of overall matching cost).
Several approaches rely on simple pixel-based cost functions
but effective support aggregation strategies have been
successftully adopted

= The smoothness/regularization E_ . term explicitly
enforces piecewise assumptions (continuity) about the scene.
This term penalizes disparity variations and large
variation are allowed only at (unknown) depth borders.
Plausibility of depth border i1s often related to edges.

* subset of the stereo pair Stefano Mattoccia



Since finding the best assignment that minimizes the energy
function a NP-hard problem, approximated but effective energy
minimization strategies have been proposed.

Relevant approaches are:
- Graph Cuts [52]
- Beli1ef Propagation [53]
— Cooperative optimization [54]

A detailed comparison of relevant energy minimization methods
can be found 1n [63].

An further and interesting class of approximated approaches
minimizes the energy function on a subset of points of the
stereo pair (typically along scanlines). In these cases the
energy minimization problem i1s efficiently solved by means
of Dynamic Programming (DP) or Scanline Optimization (SO)
techniques.

Stefano Mattoccia



[52] V. Kolmogorov and R. Zabih, Computing visual correspondence with occlusions using graph cuts, ICCV 2001
Stefano Mattoccia




BP + segmentation

[53] A. Klaus, M. Sormann and K. Karner, Segment-based stereo matching using belief propagation and a
self-adapting dissimilarity measure. ICPR 2006 Stefano Mattoccia




Cooperative + segmentation

[54] Z. Wang and Z. Zheng, A region based stereo matching algorithm using cooperative optimization, CVPR 2008
Stefano Mattoccia




Dynamic Programming (DP)

efficient (polynomial time) = 1 sec
enforces the ordering constraint
accurate at depth borders and uniform regions

streaking effect (see next slide)

Stefano Mattoccia
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Scanline Optimization (SO)

Efficient (polynomial time) = few seconds

Cannot enforce the ordering constraint

accurate at depth borders and uniform regions

overcomes the streaking effect problem (see next slide)

high memory requirement

[30 H. Hirschmdller. Stereo vision in structured environments by consistent semi-global matching.
CVPR 2006, PAMI 30(2):328-341, 2008 Stefano Mattoccia



Scanline Optimization [30]}

dtad i
gt S5t

Stefano Mattoccia



SO + support aggregation

This method combines an effective cost aggregation strategy
with a SO based disparity computation framework.

- costs are computed by means of an effective strategy
cost aggregation strategy (Segment Support)

- disparity computation relies on SO

- uses only 4 directions

- excellent results

- very slow (due to cost aggregation strategy)

Using effective cost aggregation strategy within accurate

disparity computation frameworks 1Is an interesting trend
successfully deployed also by other researchers [,]-

[29] S. Mattoccia, F. Tombari, and L. Di Stefano, Stereo vision enabling precise border localization within a scanline
optimization framework, ACCV 2007

Stefano Mattoccia



SO + support aggregation [29]
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Enforcing local consistency of disparity
fields 1n fast SO/DP based algorithms [67]

This method aims at improving the accuracy of fast SO/DP
based algorithms by enforcing the local consistency [66]
of an initial disparity hypothesis.

- evaluated deploying the initial disparity hypotheses of
C-Semiglobal [30] and RealTimeGPU [70]

- dramatically improves the initial disparity field

- relatively fast, about 15 seconds on a standard PC with
a single core

- computational optimizations/simplifications [68] enable
us to obtain almost equivalent results In less than 2
seconds on a standard multicore PC (see next slides
concerned with paper[68])

[67] S. Mattoccia, Improving the accuracy of fast dense stereo correspondence algorithms by enforcing local consistency
of disparity fields, 3DPVT2010

www.vision.deis.unibo.it/smatt//3DPVT2010.htm

Stefano Mattoccia


http://www.vision.deis.unibo.it/smatt/lc%20stereo.htm

Plausibility,

=,

cross-check Interpolation

Plausibility

This method:

- deploys the i1nitial dense disparity hypotheses provided by
a dense stereo algorithm (tested with fast and SO and DP
algorithms [30] and [70])

- enforces local consistency by means of the LC technique
[66] obtaining two independent disparity fields Dy and D;

- detects and interpolates uncertain disparity assignments
according to D; and D;

Stefano Mattoccia



Experimental results deploying the initial disparity hypotheses
of C-Semiglobal [30] available on the Middlebury web site

Error Threshold =1 Sort by nonoce Sort by all Sort by disc
| Error Thresheld... 5 | v v v
Algorithm Avg. Tsukuba Venus | Teddy Conce A e phate
Rank |nonocc all disc |nonoce all  disc |nonoce all  disc
\4 \4 \4 \

CoopReqgion [41 48 | 0871 1161 4611 0112 0212 1544 51611 8312 130s
AdaptingBP [17] 48 [1411w0 13757912 04101 021z 1442 4224 7065 118¢s
DoubleBP [35] 68 | 0BB: 12892 4762 013 04514187 353z B307 9632
OutlierConf [42] 76 | 0BBz 1437 4742|0182 0267 2401s) 5.01 v 91211 1287
r} YOUR METHOD 93 | 103s 154z 556 0447 0282 19511 544 12 11.01513.6 11
SubPixDoubleBP [30]| 10.5 |1.24 17 1.76 12598 13| 0124 04612174 7| 3452 B3B:2 100z
SurfaceStereo [79] | 11.2 | 1.28 2 165126.78 24/ 01914 0282 261 21| 3121 5101 8651
WarpMat [55] 124 |14611 1354 604 14| 018 12 0245 244 18| 5085 9.301213.0 w0
Ind r+0n 48 163 | 1B9a40 22237223 0413 0224 1341|651 19 99813164 1
GC+SeqgmBorder [57]| 176 | 147 21 182 217862701915 0.31 w244 15| 4256 5552 1094
_12 AdaptCvrSegBP [33] | 183 | 16924 204 21564 10| 0d4s 0201 1472|704 30 11117164 23
GeoSup [64] 198 |14530 18323771 38| 0148 0266 1900 | B6.8B ov 13.2:3216.1 18
PlaneFitBP [32] 201 0877 183225267047 11 051171715 B.BS 22 121 2514.7 12
SymBP+occ [7 208 | 0875 1751250096 | 0162 03312219 13| 647 18 10.71417.0 20
AdaptDispCalib [36] | 22.7 | 11914 1425 61518 02312 034 13250 10| 78035 13628173 358
Segm-+visib [4] 231 | 13024 1572 6822007942 106767647 5.00s 654z 123
< C-SemiGlob [19] | 231 | 2.61 53 32944989 42| 0.25 21 057 10324 25| 514 10 118201308

Experimental results according to the automatic evaluation procedure available at:
http://vision.middlebury.edu/stereo/ Stefano Mattoccia
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C—Seﬁiglobal [30] LC(C-Semiglobal)[67]

C-Semiglobal [30] LC(C-Semiglobal) [67]

Stefano Mattoccia




Experimental results deploying the initial disparity hypotheses
of RealTimeGPU [70] available on the Middlebury web site

Rank |nonocc  all  disc |nonocc all  disc |nonoce all  disc |nonocc  all  disc
\4 \J \J \J \J

CoopReqgion [41 48 | 0871 1161 4611 0112 0212 1544 541611 B31=z 1308 278 7184 B.D19| 4.41
AdaptingBP [17] 48 |14110 137557912 0101 0213 1442) 4224 7065 118s) 2482 V927 7323
DoubleBP [35] G4 | 0BB3 1292 4763 013s 045131878 3533 B307 89632 2890s BB 1w 7.79s
OutlierConf [42] 73 | 0BBz 1437 4742|0481 0267 24014 5017 91211 1287 278 B57 126089 ¢
SubPixDoubleBP [30] 10.2 | 12417 1.76 1259813 0124 04614174 7| 3452 B382 1003 28310 B.731w.7091s
SurfaceStereo [79] | 109 | 1282 1651267824/ 01913 028 26120 3121 5101 BE51| 2897 7.95: B.261z
WarpMat [55] 120 (11611 1354 604 14| 01812 024 24415 502 9301213.010| 348 12 B.47 129.01 2z
Undr+OvrSeq [48] | 16.2 | 18940 222 3672222 0113 0224 1341|651 12 99812164 | 2929 B8.00s 7907
GC+SegmBorder [57]| 17.2 | 14751 182178627 01914 0312 24445 425 5552 1094|4990 5781 8.66 18
AdaptOvrSegBP [331) 180 | 16934 204 51564 10| 01ds 0201 147 3| 7.04 30 11,1 18164 23] 3.60 22 896 208.84 =0
GeoSup [64] 194 14520 1.832:7.71 28 0147 026 1900 | B.B8 2y 13222161 18| 294 11 B89 12832 1=
PlaneFitBP [32] 200 | 097 1832526201710 051151715 | 66522 121 25147 12| 417 27 10.7 22106 34
SymBP+oce [7] 207 | 087 7 1.7512509s) 0168 033 121912 647 18 107 1417030 479 45 10.7 11109 38
YOUR METHOD 21.2 | 0965 16311 5197|0322 064 223232562915 121 25142 11| 42020 101 2106 a3z
I AdaptDispCalib [36] | 22.2 | 11814 1425 6.151s8| 02317 0.34 12250 12| 7.80 25 1362173 38 3.62 22 9.33 2s9.72 o7
C-SemiGlob [19] 28.7 | 261 53 3.29 449,89 42| 02520 0.57 18324 25/ 514 10 11.81213.0s| 2774 B35 1182010

| | | | | |
~-49 1 1 i i i i
ConvexTV [46] 1.2 | 3618 5725018073 11653 25050124 80| 61015 15.7 52168 27| .88 20 144 5411.5 42 9.30

ho
&
o
3
B

GenModel [20] 53.4

|

|

|

|

: s2 474 s213.080| 1.72 82 3.0Be216.9 &7
L BTCensus [50] 54.8

15051192 45| 4.64 44 1495114 41

508 v 625 75192 vs| 16880 242 52142 64| 796 40 13820203 57| 41035 954 =7 12.2 a0

Tensorvoting [9] 549 | 3798 479388641 12354 1885211558 9767 1708424080 4380 1144712250
BealTimeGPU [14] | 558 | 20545 422 57106 24| 19285 29851203 72| 723 33 144 40176 27| B.41 82 137 s216.5 e
ReliabilityDP [13] | 58.3 | 1362 3.39457.25 33| 23567 34860122 50| 9.82 50 169319.5 50| 12980 1987197 1
CostRelax [11 568.6 | 4.76 7= 6.08 74203 72| 1.41 s 248 s01B8.5 62| BB 46 1598 238 67| 3.81 32 10237118 48
TreeDP [B G20 19944 284 420996 s0) 141 =7 210774 20 169 v 2397271 75/ 100 7= 183 7189 no

Experimental results according to the automatic evaluation procedure available at:
http://vision.middlebury.edu/stereo/ Stefano Mattoccia
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RealTimeGPU [70] LC(Real TimeGPU)[67]

-

RealTimeGPU [70] LC(RealTimeGPU)[67]
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Fast dense stereo on multicore deploying a
relaxed local consistency constraint [68]
The execution time of previously described method [67], can

be dramatically reduced according to the methodologies
proposed in [68].

Deploying the same initial disparity hypotheses (that is,
C-Semiglobal and RealTimeGPU), this method enables us to
obtain almost equivalent results (see [67] In previous page)
iIn less than 2 seconds on a Core2 Quad CPU @ 2.49 GHz.

This methods:
- relies on a relaxed local consistency constraint

- takes advantage of coarse-grained thread-level paralellism

[68] S. Mattoccia, Fast locally consistent dense stereo on multicore, Sixth IEEE Embedded Computer Vision Workshop
(ECVW2010), CVPR workshop, June 13, 2010, San Francisco, USA

www.vision.deis.unibo.it/smatt/RLC stereo.htm

Stefano Mattoccia
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Measured speed-ups on a Core2 Quad CPU @ 2.49 GHz

@1 core @2 coras 3 cores 4 cores

Original [67] .

104

S ed

A-

By #E 29E 51 B4 EE 9
Wiw]

Proposed [68]

Measurements concerned with the Teddy stereo pair
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C—Seﬁiglobal [30] RLC(C-Semiglobal)[68]

-

C-Semiglobal [30] RLC(C-Semiglobal) [68]
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Constraining local consistency
on superpixels [69]

The effectiveness of the locally consistent technique [66]
can be further improved by constraining i1ts behavior on
superpixels obtained by means of segmentation [50].

This method deploys a two stage strategy to constraint Local
Consistency [66] on superpixels.
During the first phase, we over-segment the reference image:

- to detect uncertain disparity measurements
- to regularize disparity within superpixels

During the second phase we relax the segmentation constraint
In order to propagate the regularized disparity assumptions.

As for previous approaches, we start with an initial disparity
hypothesis (C-Semiglobal algorithms [30] available on [15])

[69] S. Mattoccia, Accurate dense stereo by constraining local consistency on superpixels, 20th International Conference

on Pattern Recognition (ICPR2010), August 23-26, 2010, Istanbul, Turkey _
Stefano Mattoccia
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Experimental results for [69] deploying the initial disparity
hypotheses of C-Semiglobal [30] available on the Middlebury
evaluation site

~14

—

Error Threshold =1 Sort by nonocc Sort by all Sort by disc
| Error Threshold... | #} v v v
Northm | Avg, | Tsukuba Venus Teddy cones | MR e
Rank | nonoce  all  disc |nonoce all  disc |nonocc all  disc |nonoce all disc
\4 \J \J \ \J
CoopReqgion [41 52 | 0B7: 1161 4611 0113 0212 1.54s|516 1 B31s 130:| 278+ 7.184 BO01 w
AdaptingBP [17] 53 |14110 13757912 0402 021z 144z 4224 706s 118s| 248: 7827 7.324
YOUR METHOD 58 |0B7F1 131z 4692 0.091 0292 1.291 | 54412 11.015136 11| 2482 B161w0 697 2
DoubleBP [35] 71 | 0BB4 1292 4764| 0135 0451416872 3533 B30r 963z 280z B7B 12 7.797
CutlierConf [42] B0 | 0B88: 143 4745|0482 0267 24015 5017 9121 1287 | 278s BAT 1460809
SubPixDoubleBP [301| 10.7 | 1.2417 1.76 12598 13| 012 04615 1.7ds| 3452 B3B2 1003|2831 B73 177812
SurfaceStereo [79] | 11.2 | 1282 1651267824/ 01914 0.28: 261 | 3121 5101 8651 | 280 7.95: B26 14
WarpMat [55] 125 |116 11 1.35= 6.04 14| 018 12 0845 244 18| 5085 9.301213.0 10| 349 12 B47 13901 24
LInd r+0n 48 165 | 1.B940 22237223 0114 0224 1342|651 192 9981316421 28210 B.00s 790
GC+SegmBorder [57]| 176 | 1.47 31 18221 786 27| 01815 0.31 w0244 1] 4255 5552 1084|4880 5781 B.E6 12
AdaptOvrSeqBP [33] | 18.5 | 1.69 34 204 31564 10| 0147 0201 1.47 4| 7.04 30 11.1 1716.4 23| 3.60 23 B.O96 21 8.84 21
GeoSup [64] 198 | 14530 1832377138 01d4s 026 1.90 10| 6.88 27 13.2 3216.1 18] 2.94 12 B.BY 20832 15
FlaneFitBP [32] 203 087 = 183225262 047 11 05117171 7 66522 121 25147 12| 447 22 10.7 32106 34
SymBP+occ [T 210 | 0877 175125087 | 0162 03312219 13| 647 18 10.7 1417020 47945 107 11108 2=
AdaptDispCalib [36] | 22.8 | 11914 1427 B.15 15| 0.23 18 0.34132.50 18| 7.80 35 136 3517.3 35| 3.62 24 033 269.72 28
Seqgm+visib [4] 231 | 1302 1570 6923007042 1063767647 5008 G543 123s| 37228 BEZ 181023
C-SemiGlob [19] | 23.2 | 261 =2 3.29 44989 40 02521 057 10324 25/ 514 10 118201308 277 = B35 12B.20 11 5.76

Experimental results according to the automatic evaluation procedure available at:
http://vision.middlebury.edu/stereo/
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Disparity refinement (4)

Raw disparity maps computed by correspondence algorithms
contain outliers that must be i1dentified and corrected

Moreover, since the disparity maps are typically computed
at discrete pixel level more accurate disparity assignments
would b desirable

Several approaches aimed at improving the raw disparity
maps computed by stereo correspondence algorithms have
been proposed

In the next slides 1s provided a description of some (nhot
mutually exclusive) relevant approaches

Stefano Mattoccia



Disparity refinement (4)

Raw disparity maps computed by correspondence algorithms
contain outliers that must be i1dentified and corrected

Moreover, since the disparity maps are typically computed
at discrete pixel level more accurate disparity assignments
would b desirable

Several approaches aimed at improving the raw disparity
maps computed by stereo correspondence algorithms have
been proposed

A description of some (not mutually exclusive) relevant
approaches i1s provided 1n the next slides

Stefano Mattoccia



Sub-pixel 1nterpolation

|

C(x,y,d) 1

12 14
12.8

0 13 dmax-1  d

(Typically) sub-pixel disparity is obtained interpolating the
three matching costs with a second degree function (parabola)

Computationally inexpensive and reasonably accurate
In [55] proposed a floating-point free approach

More accurate (and computational expensive) approaches
perform directly matching cost computation on sub-pixel basis

[55] L. Di Stefano, S. Mattoccia, Real-time stereo within the VIDET project Real-Time Imaging, 8(5), pp. 439-453, Oct. 2002
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Image filtering techniques

Sometime the disparity maps are simply refined by means of
image filtering techniques without (explicitly) enforcing
any constraint about the underlining disparity maps.

Common image filtering operators are:

« Median filtering
 Morphological operators

« Bilateral filtering [51]

Stefano Mattoccia



Bidirectional Matching*

Bidirectional matching (BM) i1s a widely used technique for
detecting outliers [56] 1n stereo (local and global).

The correspondence problem is solved two times
- assuming left image as reference (d ;(X,Y))

- assuming right image as reference (d; (X,Y))

and the disparity values that are not consistent between the
two maps are classified as outliers enforcing

IdLR(X’y) —dRL(x+dLR(x,y) ,Y) |<T

with threshold T typically set to 1

* aka Left-Right (consistency) check

[56] P. Fua, Combining stereo and monocular information to compute dense depth maps that preserve depth discontinuities
12th. Int. Joint Conf. on Atrtificial Intelligence, pp 1292-1298, 1993
Stefano Mattoccia



1dR(X,Y) —dg (X+dg(X,Y),YI<T ?

Outliers detected by BM
are encoded 1n white

Stefano Mattoccia



useful for detecting occlusions
preserves depth discontinuities

(partially) effective for detecting outliers
iIn ambiguous regions (see figure)

computationally expensive (two matching phases)

implicitly enforces the uniqueness constraint

Stefano Mattoccia



Single Matching Phase (SMP) — Unigueness+

The Single Matching Phase (SMP) approach [48] aims
at detecting unreliable disparity assignments using
a more computationally efficient technique.

- uses a single matching phase (1/2 vs BM)
- explicitly enforces the uniqueness constraint*

- dynamically updates the disparity map when the
uniqueness constraint i1s violated

- strengthened by additional constraints (next slides)

- effectiveness comparable to BM []

- suitable for efficient SIMD implementation

* Sometime violated (e.g. foreshortening)

Stefano Mattoccia



The correspondences are dynamically evaluated and corrected
within a single matching phase (dgz;(X,Yy))-

When two correspondences fall iIn the same point of
the target i1mage:

- the correspondence with the best score i1s kept

- the other correspondence i1s discarded

Stefano Mattoccia



The basic SMP approach can be strengthened by means of two

additional constraints:

a) Distinctiveness

e(d) 4 ]

»

b) Sharpness

e(d) a — | M

» d

Example:
repetitive pattern

Example:
uniform region
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Example of reliable
correspondence

v
o

An exhaustive comparison between DM and SMP on stereo pailrs
with groundtruth can be found 1n [48].

Outliers are
encoded in white

SMP
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Performance evaluation [48]: SMP vs BM (PI11 800 MHZz)

1400

1200

1000

time (ms)

a0o

400

SMP - BM performance {msec per frame)

B 1024762

>

P

Bl 20000
/ o

S 1024762
B 640420

/

200 +

SIIP 200500
SIIP 6d0x420

B 320240
S IP 3002240

16

32 45 G4 aa
dispatity range

Stefano Mattoccia



Segmentation based outliers
identification and replacement

Two fundamental assumptions:
1) disparity within each segment varies smoothly
2) each segment can be approximated with a plane

Sometime 2) i1s not verified (below)= over-segmentation
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Z frontal
parallel

3D view

3 DOF

frontal
parallel

Top view
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Each segment is modelled with a plane in the 3D space (3 DOF):
d(x,y) = ax + py + v
Robust plane fitting of disparity measurements:
e RANSAC [25] (i1terative)
e Histogram Voting [54] (hon i1terative)
The best performing algorithms on the Middlebury dataset cast
robust plane fitting within a global energy minimization
framework.
The next slide shows robust plane fitting of disparity

measurements computed by a local approach (WTA + BM +
Histogram Voting).

Interesting research activity: replacing planes with more
complex surfaces
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Example of robust plane fitting

| S

Local approach (FBS) + WTA + BM + robust plane fitting
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Robust interpolation of noisy measurements

e Disparity maps always contain outliers

e Reliable fitting with planes requires interpolation
techniques robust to outliers

Traditional approach Robust i1nterpolation
(Least Square (LS))

RANSAC and Histogram Voting are two techniques used In
stereo for robust interpolation of noisy disparity
measurements

Stefano Mattoccia



Accurate localization of borders and occlusions

In [29] was proposed a method for accurate detection of
depth borders and occlusions.

= This method uses the disparity maps (d,; and d; ) computed
by a (local or global) stereo correspondence algorithm

e Borders and occlusions are detected (without global
energy minimization frameworks) enforcing, along
scanlines, constraints between occlusions (in one
image) and discontinuities (in the other i1mage)

e Accurate results (see the next slides)

e Evaluated with the disparity maps provided by the
algorithm described in [29] (SO0 + SegmentSupport)

[29] S. Mattoccia, F. Tombari, and L. Di Stefano, Stereo vision enabling precise border localization within a scanline
optimization framework, ACCV 2007
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Occlusions (yellow) Borders (red)
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Occlusions (yellow) Borders (red) ,
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Iterative approaches
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Computational Optimizations
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Hardware implementation
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Applications @ CVLab

3D Tracking

3D Graffiti Detection

e stereo vision

 TOF

3D scanning

Space-time stereo

2D and 3D Change Detection
Augmented Reality (2.5 D)
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3D Tracking

Applications:

e people counting (building, bus, train)

e monitoring trajectories (shopping, sport)
e safety

e surveillance and security

Stefano Mattoccia



Virtual
Camera

R, T Real
Camera

------
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Virtual
Camera

R, T Real
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Real Virtual
Camera Camera

[37] T. Darrell, D. Demirdijan, N. Checka, P. Felzenszwalb, Plan-view trajectory estimation with dense stereo background
models, International Conference on Computer Vision (ICCV 2001), 2001

[38] M. Harville, Stereo person tracking with adaptive plan-view templates of height and occupancy statistics
Image and Vision Computing 22(2) pp 127-142, February 2004
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Height Occupancy

http://www.vision.deis.unibo.it/smatt/stereo.htm
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Remote visualization (via TCP/IP and OpenGL/VTK)

Stefano Mattoccia



Current developments

 Improving the 3D tracking system (using different approaches
and/or deploying more accurate stereo matching algorithms)

 Extension to multiple networked cameras (see fTigure)

 Improving the range capability of the stereo algorithm by
means of novel computationally efficient approach

Stefano Mattoccia



Graffiti detection — stereo vision

Stereo-based (offline) registration of two views of the

background
Intrusion: changes between registered images

Background appearance changes (e.g. graffiti): changes

In one view but not between registered images

e Videol
e Video?2

e VVideo3

e Video4

http://vision.deis.unibo.it/smatt/graffiti.html

[36] L. Di Stefano, F. Tombari, A. Lanza, S. Mattoccia, S. Monti, Graffiti detection using two views

ECCV 2008 - 8th International Workshop on Visual Surveillance (VS 2008) Stefano Mattoccia


http://vision.deis.unibo.it/smatt/graffiti.html
http://vision.deis.unibo.it/smatt/Graffiti/general.avi
http://vision.deis.unibo.it/smatt/Graffiti/lagrandefatica1.avi
http://vision.deis.unibo.it/smatt/Graffiti/OUTPUT.avi
http://vision.deis.unibo.it/smatt/Graffiti/OUTPUTIN.avi
http://vision.deis.unibo.it/smatt/graffiti.html

Graffiti detection — Time of Flight (TOF)

-

Change mask

‘ -
ii -\
Background Current frame
(64x64) (64x64)

[35] F. Tombari, L. Di Stefano, S. Mattoccia, A. Zanetti, Graffiti detection using a Time-Of-Flight camera

Advanced Concepts for Intelligent Vision Systems (ACIVS 2008) _
Stefano Mattoccia



Space-time stereo

e Active stereo technique
e Random patterns projection
e DSI Integrated over time
e FW (small support 1x1, 3x3)
e Qutlier removal (mainly
occlusions) by means of
DSI filtering
e High quality depth maps
e Fast (FW)
e Constraint: static scene

Random pattern

=

[33 ] Li Zhang, Brian Curless, and Steven M. Seitz Spacetime Stereo: Shape Recovery for Dynamic Scenes
In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR, 2003, pp. 367-374

[34 ] J. Davis, D. Nehab, R. Ramamoothi, S. Rusinkiewicz. Spacetime Stereo : A Unifying Framework for Depth from Triangulation,

IEEE Trans. On Pattern Analysis and Machine Intelligence (PAMI), vol. 27, no. 2, Feb 2005 _
Stefano Mattoccia
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3D Scanning

registration of 3D dense stereo measurements
uncalibrated views

keypoints matching with SIFT [62]

absolute orientation (LS & RANSAC [25])

Stefano Mattoccia



Preliminary experimental results (space-time stereo [33,34])

Stefano Mattoccia



3D change detection

Background
Modelling

2D
Output

3D
Detection

Background
Registration

Stereo
Matching

3D
Output

During the background registration stage, the
histogram of the background model B2D (center)
iIs registered according to the specification

given by the histogram of the frame F (left),
yielding the new background model BR (right)

[31] F. Tombari, S. Mattoccia, L. Di Stefano, F. Tonelli, Detecting motion by means of 2D and 3D information

ACCV'07 Workshop on Multi-dimensional and Multi-view Image Processing (ACCV 2007 WS) _
Stefano Mattoccia
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(Simple) Background
difference

3D
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#15 [

#35 W

#55 K

#65 W

#85

#395

http://www.vision.deis.unibo.it/smatt/stereo.htm
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Augmented reality (2.5D)

e Camera pose estimation from point correspondences
(SIFT) on a plane. Calibrated camera (Intrinsics)

e Projection of a 3D shape linked to the reference

plane according to estimated pose (video)

R -
LB

Y "-/;}mlll:nr.'u;?’ i
Nt
.

ARIS Project: Cooperation with V-Lab Forli and
CIRA - Centro Italiano Ricerche Aerospaziali

http://www.vision.deis.unibo.it/AugRea.asp

[32] P. Azzari, L. Di Stefano, F. Tombari, S. Mattoccia, Markerless augmented reality using image mosaics

International Conference on Image and Signal Processing (ICISP 2008) _
Stefano Mattoccia
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