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Abstract. Significant achievements have been attained in the field of dense stereo
correspondence by local algorithms based on an adaptive support. Given the prob-
lem of matching two correspondent pixels within a local stereo process, the basic
idea is to consider as support for each pixel only those points which lay on the
same disparity plane, rather than those belonging to a fixed support.

This paper proposes a novel support aggregation strategy which includes infor-
mation obtained from a segmentation process. Experimental results on the Mid-
dlebury dataset demonstrate that our approach is effective in improving the state
of the art.
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1 Introduction

Given a pair of rectified stereo images Ir, It, the problem of stereo correspondence is to
find for each pixel of the reference image Ir the correspondent pixel in the target image
It. The correspondence for a pixel at coordinate (x̄, ȳ) can only be found at the same
vertical coordinate ȳ and within the range [x̄ + dm, x̄ + dM ], where D = [dm, dM ]
denotes the so-called disparity range.

The basic local approach selects, as the best correspondence for a pixel p on Ir, the
pixel of It which yields the lowest score of a similarity measure computed on a (typ-
ically squared) fixed support (correlation window) centered on p and on each of the
dM − dm candidates defined by the disparity range. The use of a spatial support com-
pared to a pointwise score increases the robustness of the match especially in presence
of noise and low-textured areas, but the use of a fixed support is prone to errors due
to the fact that it blindly aggregates pixels belonging to different disparities. For this
reason, incorrect matches tend to be generated along depth discontinuities.

In order to improve this approach, many techniques have been proposed which try to
select for each pixel an adaptive support which best aggregates only those neighbouring
pixels at the same disparity [1], [2], [3], [4], [5], [6] (see [7] and [8] for a review). Re-
cently very effective techniques [8], [9] were proposed, which represent state of the art
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for local stereo algorithms. The former technique weights each pixel of the correlation
window on the basis of both its spatial distance and its colour distance in the CIELAB
space from the central pixel. Though this technique provides in general excellent results,
outperforming [9] on the Middlebury dataset1, in presence of highly textured regions
the support can shrink to a few pixels thus dramatically reducing the reliability of the
matches. Unreliable matches can be found also near depth discontinuities, as well as in
presence of low textured regions and repetitive patterns.

This paper proposes a novel adaptive support aggregation strategy which deploys
segmentation information in order to increase the reliability of the matches. By means
of experimental results we demonstrate that this approach is able to improve the quality
of the disparity maps compared to the state of the art of local stereo algorithms.

In the next section we review the state of the art of adaptive support methods for
stereo matching. For a more comprehensive survey on stereo matching techniques
see [10].

2 Previous Work

In [9] Gerrits and Bekaert propose a support aggregation method based on the segmen-
tation of the reference image (Ir) only. When evaluating the correspondence between
two points, p ∈ Ir and q ∈ It, both correlation windows are identically partitioned into
two disjoint regions, R1 and R2. R1 coincides with the segment of the reference im-
age including p, R2 with its complement. Points belonging to R1 gets a high constant
weight, those belonging to R2 a low constant weight. Cost computation relies on an
M-estimator. A major weakness of the method is that the support aggregation strategy
is not symmetrical (i.e. it relies on Ir only) hence does not deploys useful information
which may be derived from the segmentation of the target image (It). Experimental
results shows that [9] is clearly outperformed by the algorithm from Yoon and Kweon
in [8], which is currently the best local stereo algorithm.

The basic idea of [8] is to extract an adaptive support for each possible correspon-
dence by assigning a weight to each pixel which falls into the current correlation win-
dow Wr in the reference image and, correspondingly, in the correlation window Wt

in the target image. Let pc and qc being respectively the central points of Wr and Wt,
whose correspondence is being evaluated. Thus, the pointwise score, which is selected
as the Truncated Absolute Difference (TAD), for any point pi ∈ Wr corresponding to
qi ∈ Wt is weighted by a coefficient wr(pi, pc) and a coefficient wt(qi, qc), so that the
total cost for correspondence (pc, qc) is given by summing up all the weighted pointwise
scores belonging to the correlation windows and normalized by the weights sum:

C(pc, qc) =

∑

pi∈Wr,qi∈Wt

wr(pi, pc) · wt(qi, qc) · TAD(pi, qi)

∑

pi∈Wr ,qi∈Wt

wr(pi, pc) · wt(qi, qc)
(1)

1 The image pairs together with the groundtruth are available at: http://cat.middlebury.edu/
stereo/data.html
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Each point in the window is weighted on the basis of its spatial distance as well as of
its distance in the CIELAB colour space with regards to the central point of the window.
Hence, each weight wr(pi, pc) for points in Wr (and similarly each weight wt(qi, qc)
for points in Wt) is defined as:

wr(pi, pc) = exp

(
−dp(pi, pc)

γp
− dc (Ir(pi), Ir(pc))

γc

)
(2)

where dc and dp are respectively the euclidean distance between two CIELAB triplets
and the euclidean distance between two coordinate pairs, and the constants γc, γp are
two parameters of the algorithm.

This method provides excellent results but has also some drawbacks, which will be
highlighted in the following by analysing the results obtained by [8]2 on stereo pairs
belonging to the Middlebury dataset and shown in Fig. 1.

Depth discontinuities. The idea of a variable support is mainly motivated by depth dis-
continuities: in order to detect accurately depth borders, the support should separate
“good” pixels, i.e. pixels at the same disparity as the central point, from “bad” pixels,
i.e. pixels at a different disparity from the central point. It is easy to understand that
within these regions the concept of spatial distance is prone to lead to wrong separa-
tions, as due to their definition border points always have close-by pixels belonging to
different depths. Therefore “bad” pixels close to the central point might receive higher
weights than “good” ones far from the central point, this effect being more significant
the more the chromatic similarities between the regions at different disparities increase.
Moreover, as for “good” pixels, far ones might receive a significantly smaller weight
than close ones while ideally one should try to aggregate as many “good” pixels as pos-
sible. Generally speaking, weights based on spatial proximity from the central point are
constant for each correlation window, hence drive toward fixed - not anymore variable
- supports, with all negatives consequences of such an approach.

Fig. 2 shows a typical case where the use of spatial distance would determine
wrongly the correct support. Imagine that the current point (the blue point in figure)
is on the border of two planes at different depths and characterized by a slightly differ-
ent colour or brightness. The central image shows the correlated pixels (circles coloured
from red - high correlation - to yellow - low correlation) on the basis of spatial proxim-
ity, where it can be seen that many “bad” pixels would receive a high weight because of
the close spatial distance from the central point. Right image depicts in red the correct
support that should be ideally extracted. This effect leads to mismatches on some depth
borders of the Tsukuba and Venus datasets, as indicated by the blue boxes of Fig. 1
(groundtruth is shown in Fig. 6).

Low textured surfaces. A further drawback of [8] deals with matching ambiguities
which apply when trying to match points belonging to low textured areas on constant
depths. When considering the correspondence of points on these areas, the support
should ideally enlarge itself as much as possible in order to maximize the signal-to-
noise ratio. Instead, the combined use of the spatial and colour proximities force the

2 The results shown in this paper were obtained running the authors’ code available at:
http://cat.middlebury.edu/stereo/code.html
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Fig. 1. Some typical artifacts caused by the cost function adopted by [8] on high textured regions
(red), depth discontinuities (blue), low textured regions (green), repetitive patterns (yellow). [This
image is best viewed with colors].
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Fig. 2. Example of a correlation window along depth borders (left), correspondent weights as-
signed by [8] on the basis of spatial proximity (center) and ideal support (right).[This image is
best viewed with colors].

Fig. 3. Examples where the support shrinks to a few elements due to the combined use of spatial
and colour proximity. The coloured circles indicate the region correlated to the central pixels on
the basis of the spatial proximity.

support to be smaller than the correlation window. This effect is particularly evident in
datasets Venus, Cones and Teddy, where the low textured regions denoted by the green
boxes of Fig. 1 lead to remarkable artifacts in the correspondent disparity map.

High textured surfaces. Suppose to have a high textured region laying on a constant
disparity plane. Then, for all those points having not enough chromatic similarities
in their surroundings the aggregated support tends to reduce to a very small number
of points. This effect is due to the weights decreasing exponentially with the spatial
and colour distances, and it tends to reduce notably the robustness of the matching as
the support tends to become pointwise. It is important to note that in these situations
the support should ideally enlarge itself and aggregate many elements in the window
because of the constant depth.
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Fig. 4. Typical example of a repetitive pattern along epipolar lines where the aggregation step
of [8] would lead to ambiguous match. Red-to-yellow colours are proportional to the weights
assigned to the supports.

In order to have an idea of the behaviour of the aggregated support, consider the
situation of Fig. 3, where some particular shapes are depicted. In the upper row, the blue
point represents the current element for which the support aggregation is computed and
the blue square represents the window whose elements concur in the computation of
the support. In the lower row the coloured circles denote the points correlated to the
central point on the basis of the spatial proximity criterion, where red corresponds to
high correlation and yellow to low correlation. As it can be clearly seen the combined
use of spatial and colour proximity would lead in these cases to very small aggregated
supports compared to the whole area of the shapes as well as to the correlation window
area.

Typical artifacts induced by this circumstance are evident in datasets Venus, Cones
and Teddy as highlighted by the red boxes in Fig. 1, where it is easy to see that they are
often induced by the presence of coloured writings on objects in the scene and that they
produce notable mistakes in the correspondent regions of the disparity maps.

Repetitive patterns. Finally, a further problem due to the use of the weight function
(1) applies in presence of repetitive patterns along the epipolar lines. As an example
consider the situation depicted in Fig. 4. In this case, the blue point in top left image
has to be matched with two candidates at different disparities, centered on two similar
patterns and shown in top right image. In this situation, the combined use of spatial
and colour proximities in the weight function would extract supports similar to the ones
shown in the bottom part of the figure, where red corresponds to high weight values and
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yellow to low weight values. It is easy to see that the pixels belonging to both candidate
supports are similar to the reference support, hence would lead to an ambiguous match.
This would not happen, e.g., with the use of the common fixed square support which
includes the whole pattern.

In Fig. 1 a typical case of a repetitive pattern along epipolar lines is shown by the
yellow box in dataset Tsukuba, which lead to mismatches in the disparity map. Also the
case depicted by the yellow box in dataset Cones seems due to a similar situation.

3 Proposed Approach

The basic idea beyond our approach is to employ information obtained from the ap-
plication of segmentation within the weight cost function in order to increase the ro-
bustness of the matching process. Several methods have been recently proposed based
on the hypothesis that disparity varies smoothly on each segment yielded by an (over-
)segmentation process applied on the reference image [9], [11], [12]. As the cost func-
tion (1) used to determine the aggregated support is symmetrical, i.e. it computes
weights based on the same criteria on both images, we propose to apply segmentation
on both images and to include in the cost function the resulting information. The use
of segmentation allows for including in the aggregation stage also information dealing
with the connectiveness of pixels and the shape of the segments, rather than only relying
blindly on colour and proximity. Because our initial hypothesis is that each pixel lying
on the same segment of the central pixel of the correlation window must have a similar
disparity value, then its weight has to be equal to the maximum value of the range(i.e.
1.0). Hence we propose a modified weight function as follows:

w′
r(pi, pc) =

{
1.0 pi ∈ Sc

exp
(
− dc(Ir(pi),Ir(pc))

γc

)
otherwise

(3)

with Sc being the segment on which pc lies. It is important to note that for all pixels
outside segment Sc, the proximity term has been eliminated from the overall weight
computation and all pixels belonging to the correlation window have the same impor-
tance independently from their distance from the central point, because of the negative
drawbacks of the use of such a criterion shown in the previous section. Instead, the use
of segmentation plays the role of an intelligent proximity criterion.

It is easy to see that this method is less subject to the negative aspects of method [8]
outlined in the previous section. The problem of having very small supports in presence
of shapes such as the ones depicted in Fig. 3 is improved by segmentation. In fact, as
segmentation allows segments to grow as long as chromatic similarity is assessed, the
aggregated supports extracted by proposed approach are likely to correctly coincide
with the shapes depicted in the figure. Moreover, the use of segmentation in spite of the
spatial proximity would allow to extract correctly the support also for border points such
as the situation described in Fig. 2, with the extracted support tending to coincide with
the one shown on the right of that figure. Improvements are yielded also in presence of
low textured areas: as they tend to correspond to a single segment because of the low
texture, the support correctly enlarges to include all points of these regions. Finally, in
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presence of repetitive patterns such as the ones shown in Fig. 4 the exclusion of the
spatial proximity from the weights computation allows only the correct candidate to
have a support similar to the one of the reference point.

Moreover, from experimental results it was found that the use of a colour space
such as the CIELAB helps the aggregation of pixels which are distant chromatically
but which are closer in the sense of the colour space. Unfortunately this renders the
colour distance measure less selective, and tends to produce more errors along depth
discontinuities.Conversely, the use of the RGB colour space appeared more picky, de-
creasing the chance that pixels belonging to different depths are aggregated in the same
support, but also increasing the number of artifacts along textured regions which lie at
the same depth. As the use of segmentation implies adding robustness to the support,
we found more convenient to operate in the RGB space in order to enforce smoothness
over textured planes as well as to increase the accuracy of depth borders localization.

Finally, it is worth pointing out that there are two main differences between our
method and that proposed in [9]: first we apply segmentation on both reference and
target images, hence the support aggregation strategy is symmetric. Besides, rather than
using two constant weights, we exploit the concept of colour proximity with all benefits
of such an approach shown in [8].

4 Experimental Results

In this section we present some experimental results of the proposed method. First we
compare our results on the Middlebury dataset with those yielded by [8] using a Winner-
Take-All (WTA) strategy. The parameter set is kept constant for all image pairs: the set
used for the algorithm by Yoon and Kweon is the one proposed in the experimental
results in [8], while the set used for the proposed approach is: γc = 22.0, window size
= 51 × 51, T (parameter for TAD) = 80. For what means the segmentation step in
the proposed approach, we use the Mean-Shift algorithm [13] with the same constant
parameter set, that is: σS = 3 (spatial radius), σR = 3 (range radius), minR = 35
(minimum region size). Figure 5 shows the output of the segmentation stage on both
images of each of the 4 stereo pairs used for testing.

Fig. 6 compares the disparity maps obtained by [8] with the proposed approach. Sig-
nificant improvements can be clearly noticed since the artifacts highlighted in Fig. 1 are
less evident or no longer present. In particular, errors within the considered high tex-
tured regions on Venus and Teddy are greatly reduced and almost disappear on Cones.
Accuracy along depth borders of Tsukuba is significantly enhanced while the error
along the depth border in Venus shrinks to the true occluded area. Moreover, highlighted
artifacts present on low textured regions notably decrease on Venus and disappear on
Teddy and Cones. Finally, also the artifacts due to the presence of repetitive patterns as
shown on Tsukuba and Cones definitely disappear.

In addition, Table 1 shows the error percentages with regards to the groundtruth,
with the error threshold set to 1, computed on the maps of Fig. 6. For each image pair
two error measures are proposed: the former is relative to all image area except for
occlusions (N.O.), the latter only to discontinuities except for occlusions (DISC). The
error on all image area including occlusions has not been reported because occlusions
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Fig. 5. Output of the segmentation stage on the 4 stereo pairs of the Middlebury dataset

are not handled by WTA strategy. As it can be seen from the table, the use of the
proposed approach yields notable improvements for what concerns the error measure
on all N.O. area. Moreover, by looking only at discontinuities, we can see that generally
the proposed approach allows for a reduction of the error rate (all cases except for
Cones). Benefits are mostly evident on Venus and Tsukuba.

Finally, we show the results obtained by our method after application of the Left-
Right consistency check and interpolation of those points which were determined as
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Fig. 6. Reference images (first column), disparity maps computed by [8] (second column) and
our approach (third column), ground truth (last column)

Table 1. Comparison between proposed approach and method [8] on the Middlebury dataset
using a WTA strategy

Tsukuba Venus Teddy Cones
N.O. - DISC N.O. - DISC N.O. - DISC N.O. - DISC

Proposed 2,05 - 7,14 1,47 - 10,5 10,8 - 21,7 5,08 - 12,5
[8] 4.66 - 8.25 4.61 - 13.3 12.7 - 22.4 5.50 - 11.9

inconsistent. The obtained disparity maps were submitted and are available at the Mid-
dlebury website. We report, in Tab. 2, the quantitative results of our method (referred
to as SegmentSupport) compared to the submitted results of method [8] (referred to as
AdaptWeight), together with the overall ranking assigned by Middlebury to the two
approaches. The table reports also the results published in [9] which consist only of the
error rates on the ALL groundtruth maps (all image area including occlusions), since
no submission has been done so far on Middlebury. As it is clear from the table and the
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Table 2. Disparity error rates and rankings obtained on Middlebury website by the proposed
approach (referred to as SegmentSupport) compared to method [8] (referred to as AdaptWeight)
and (where available) [9]

Rank Tsukuba Venus Teddy Cones
N.O. - ALL - DISC N.O. - ALL - DISC N.O. - ALL - DISC N.O. - ALL - DISC

SegmentSupport � 9 1.25 - 1.62 - 6.68 0.25 - 0.64 - 2.59 8.43 - 14.2 - 18.2 3.77 - 9.87 - 9.77
AdaptWeight � 13 1.38 - 1.85 - 6.90 0.71 - 1.19 - 6.13 7.88 - 13.3 - 18.6 3.97 - 9.79 - 8.26
[9] n.a. n.a. - 2.27 - n.a. n.a. - 1.22 - n.a. n.a. - 19.4 - n.a. n.a. - 17.4 - n.a.

Middlebury website, currently our approach is the best performing known local method
ranking 9th overall (as of July 2007).

5 Conclusions

In this paper a novel support aggregation strategy has been proposed, which embodies
the concept of colour proximity as well as segmentation information in order to obtain
accurate stereo correspondence. By means of experimental comparisons it was shown
that the proposed contribution, deployed within a WTA-based local algorithm, is able
to improve the accuracy of disparity maps compared to the state of the art. It is likely
that the proposed strategy might be usefully exploited also outside a local framework:
this is currently under study.
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