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Abstract. A novel algorithm for obtaining accurate dense disparity
measurements and precise border localization from stereo pairs is pro-
posed. The algorithm embodies a very effective variable support ap-
proach based on segmentation within a Scanline Optimization frame-
work. The use of a variable support allows for precisely retrieving depth
discontinuities while smooth surfaces are well recovered thanks to the
minimization of a global function along multiple scanlines. Border local-
ization is further enhanced by symmetrically enforcing the geometry of
the scene along depth discontinuities. Experimental results show a signif-
icant accuracy improvement with respect to comparable stereo matching
approaches.

1 Introduction and Previous Work

In the last decades stereo vision has been one of the most studied task of com-
puter vision and many proposals have been made in literature on this topic (see
[1] for a review). The problem of stereo correspondence can be formulated as
follows: given a pair of rectified stereo images, with one being the reference im-
age Ir and the other being the target image It, we need to find for each point
pr ∈ Ir its correspondence pt ∈ It which, due to the epipolar constraint, lies on
the same scanline as pr and within the disparity range D = [dmin; dmax].

The taxonomy proposed by Scharstein and Szelinski [1] for dense stereo tech-
niques subdivides stereo approaches into two categories: local and global. Local
approaches determine the stereo correspondence for a point pr by selecting the
candidate pt,d, d ∈ D which minimizes a matching cost function CM (pr, pt,d). In
order to decrease the ambiguity of the scores the matching cost is not pointwise
but is typically computed over a support which includes pr on Ir and pt,d on It.
While the support can be in the simplest cases a static squared window, notable
results have been yielded by using a variable support which dynamically adapts
itself depending on the surroundings of pr and pt,d [2], [3], [4], [5], [6], [7], [8].
Conversely, most global methods attempt to minimize an energy function com-
puted on the whole image area by employing a Markov Random Field model.
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Since this task turns out to be a NP-hard problem, approximate but efficient
strategies such as Graph Cuts (GC) [9] and Belief Propagation (BP) [10], [11]
have been proposed. In particular, a very effective approach turned out to be
the employment of segmentation information and a plane fitting model within a
BP-based framework [12], [13], [14].

A third category of methods which lies in between local and global approaches
refers to those techniques based on the minimization of an energy function com-
puted over a subset of the whole image area, i.e. typically along epipolar lines or
scanlines. The adopted minimization strategy is usually based on Dynamic Pro-
gramming (DP) or Scanline Optimization (SO) [15], [16], [17], [18] techniques,
and some algorithms also exploit DP on a tree [19], [20]. The global energy func-
tion to be minimized includes a pointwise matching cost CM (see [1] for details)
and a smoothness term which enforces constant disparity e.g. on untextured
regions by means of a discontinuity penalty π:

E (d (A)) =
∑

i∈A

CM

(
pi

r, p
i
t,d(A)

)
+ N (d (A)) · π (1)

with A being the image subset (e.g. a scanline) and N being the number of times
the smoothness constraint is violated within the region where the cost function
has to be minimized. These approaches achieved excellent results in terms of
accuracy in the disparity maps [15] and in terms of very fast, near real-time,
computational performances [17].

In order to increase robustness against outliers a fixed support (typically a 3×3
window) can be employed instead of the pointwise matching score. Nevertheless,
this approach embodies all the negative aspects of a local window-based method,
which are especially evident near depth discontinuities: object borders tend to
be inaccurately detected.

Hence, a first contribution proposed by this paper is to deploy an SO-based
algorithm which embodies, as matching cost CM , a function based on a vari-
able support. The SO framework allows to handle effectively low-textured sur-
faces while the variable support approach helps preserving accuracy along depth
borders. In order to determine the variable support, we adopt a very effective
technique based on colour proximity and segmentation [21] recently proposed
for local approaches. The accuracy of the SO-based process is also improved by
the use of a symmetrical smoothness penalty which depends on the pixel inten-
sities of both stereo images. It will be shown that this approach allows to obtain
notable accuracy in the retrieved disparities.

Moreover, we propose a refinement step which allows to further increase the
accuracy of the proposed method. This step relies on a technique that, exploiting
symmetrically the relationship between occlusions and depth discontinuities on
the disparity maps obtained assuming alternatively as reference the left and the
right image, allows for accurately locating borders. This is shown to be partic-
ularly useful to assign the correct disparity values to those points violating the
cross-checking constraint. Finally, experimental results show that the proposed
approach is able to determine accurate dense stereo maps and it is state-of-the-
art for what means approaches which do not rely on a global framework.
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2 The Support Aggregation Stage

The first step of the proposed technique computes matching costs based on a
variable support strategy proposed in [21] for local algorithms. In particular,
given the task of finding the correspondence score between points pr ∈ Ir and
pt,d ∈ It, during the support aggregation step each point of Ir is assigned a
weight which depends on color proximity from pr as well as on information
derived from a segmentation process applied on the colour images. In particular,
weight wr(pi, pr) for point pi belonging to Ir is defined as:

wr(pi, pr) =

{
1.0 pi ∈ Sr

exp
(
− dc(Ir(pi),Ir(pr))

γc

)
otherwise

(2)

with Sr being the segment on which pr lies, dc the Euclidean distance between
two RGB triplets and the constant γc a parameter of the algorithm. A null
weight is assigned to those points of Ir which lie too far from pr, i.e. whose
distance along x or y direction exceeds a certain radius. A similar approach is
adopted to assign a weight wt(qi, pt,d) to each point qi ∈ It. It is interesting to
note that this strategy allows to ideally extract two distinct supports at every
new correspondence evaluation, one for the reference image and the other for
the target image.

Once the weights are computed, the matching cost for correspondence
(pr, pt,d) is determined by summing over the image area the product of such
weights with a pointwise matching score (the Truncated Absolute Difference
(TAD) of RGB triplets) normalised by the weight sum:

CM,v(pr, pt,d) =

∑

pi∈Ir ,qi∈It

wr(pi, pr) · wt(qi, pt,d) · TAD(pi, qi)

∑

pi∈Ir,qi∈It

wr(pi, pr) · wt(qi, pt,d)
(3)

3 A Symmetric Scanline Optimization Framework

The matching cost CM,v(pr, pt,d) described in the previous section is embodied
in a simplified SO-based framework similar to that proposed in [15]. Hence,
in the first stage of the algorithm the matching cost matrix CM,v(pr, pt,d) is
computed for each possible correspondence (pr, pd,t). Then, in the second stage,
4 SO processes are used: 2 along horizontal scanlines on opposite directions and
2 similarly along vertical scanlines. The j-th SO computes the current global cost
between pr and pt,d as:

Cj
G(pr, pt,d) = CM,v(pr, pt,d) + min(Cj

G(pp
r , p

p
t,d), C

j
G(pp

r , p
p
t,d−1) + π1,

Cj
G(pp

r , p
p
t,d+1) + π1, cmin + π2) − cmin (4)

with pp
r and pp

t,d being respectively the point in the previous position of pr and
pt,d along the considered scanline, π1 and π2 being the two smoothness penalty
terms (with π1 ≤ π2) and cmin defined as:
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cmin = mini(C
j
G(pp

r , p
p
t,i)) (5)

For what means the two smoothing penalty terms, π1 and π2, they are dependent
on the image local intensities similarly to what proposed in [22] within a global
stereo framework. This is due to the assumption that often a depth discontinuity
coincides with an intensity edge, hence the smoothness penalty must be relaxed
along edges and enforced within low-textured areas. In particular, we apply a
symmetrical strategy so that the two terms depend on the intensities of both Ir

and It. If we define the intensity difference between the current point and the
previous one along the considered scanline on the two images as:

� (pr) = |Ir(pr) − Ir(pp
r)|

�(pt,d) = |It(pt,d) − It(p
p
t,d)| (6)

then π1 is defined as:

π1(pr, pt,d) =

⎧
⎪⎪⎨

⎪⎪⎩

Π1 �(pr) < Pth, �(pt,d) < Pth

Π1/2 �(pr) ≥ Pth, �(pt,d) < Pth

Π1/2 �(pr) < Pth, �(pt,d) ≥ Pth

Π1/4 �(pr) ≥ Pth, �(pt,d) ≥ Pth

(7)

where Π1 is a constant parameter of the algorithm, and π2 is defined in the same
manner based on Π2. Finally, Pth is a threshold which determines the presence of
an intensity edge. Thanks to this approach, horizontal/vertical edges are taken
into account along corresponding scanline directions (i.e. horizontal/vertical)
during the SO process, so that edges orthogonal to the scanline direction can
not influence the smoothness penalty terms.

Once the 4 global costs CG are obtained, they are summed up together and
a Winner-Take-All approach on the final cost sum assigns the disparity:

dpr ,best = arg min
d∈D

{
4∑

j=1

Cj
G(pr, pt,d)} (8)

4 A First Experimental Evaluation of the Proposed
Approach

We now briefly show some results dealing with the use of the approach outlined
so far. In particular, in order to demonstrate the benefits of the joint use of the
SO-based framework with the variable support-based matching cost CM,v, we
compare the results yielded by our method to those attainable by the same SO
framework using the pointwise TAD matching cost on RGB triplets, as well as
by CM,v in a local WTA approach.

The dataset used for experiments is available at the Middlebury website1.
Parameter set is constant for all runs. Truncation parameter for TAD in both
1 vision.middlebury.edu/stereo
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Table 1. Error rates using CM,v within the SO-based framework proposed (first row),
a pointwise matching cost (CM,p) within the same SO-based framework (second row),
and CM,v in a local WTA approach (last row)

Tsukuba Venus Teddy Cones
N.O. - DISC N.O. - DISC N.O. - DISC N.O. - DISC

CM,v, SO 1.63 - 6.80 0.97 - 9.03 9.64 - 19.35 4.60 - 11,52
CM,p, SO 3.70 - 13.38 4.19 - 19.27 12.28 - 20.40 5.99 - 13.96
CM,v, local 2,05 - 7,14 1,47 - 10,5 10,8 - 21,7 5,08 - 12,5

approaches is set to 80. For what means the variable support, segmentation
is obtained by running the Mean Shift algorithm [23] with a constant set of
parameters (spatial radius σS = 3, range radius σR = 3, minimum region size
minR = 35), while maximum radius size of the support is set to 51, and parame-
ter γc is set to 22. Finally, for what means the SO framework, our approach is run
with Π1 = 6, Π2 = 27, Pth = 10, while the pointwise cost-based approach is run
with Π1 = 106, Π2 = 312, Pth = 10 (optimal parameters for both approaches).

Table 1 shows the error rates computed on the whole image area except for
occlusion (N.O.) and in proximity of discontinuities (DISC ). Occlusions are not
evaluated here since at this stage no specific occlusion handling approach is
adopted by any of the algorithms. As it can be inferred, the use of a variable
support in the matching cost yields significantly higher accuracy in all cases
compared to the pointwise cost-based approach, the highest benefits being on
Tsukuba and Venus datasets. Moreover, benefits are significant also by consid-
ering only depth discontinuities, which demonstrate the higher accuracy in re-
trieving correctly depth borders provided by the use of a variable support within
the SO-based framework. Finally, benefits of the use of the proposed SO-based
framework are always notable if we compare the results of our approach with
those yielded by using the same cost function within a local WTA strategy.

5 Symmetrical Detection of Occluded Areas and Depth
Borders

By respectively assuming as reference Ir the left and the right image of the
stereo pair, it is possible to obtain two different disparity maps, referred to
as DLR and DRL. Our idea is to derive a general method for detecting depth
borders and occluded regions by enforcing the symmetrical relationship on both
maps between occlusions and depth borders resulting from the stereo setup and
the scene structure.

In particular, due to the stereo setup, if we imagine to scan any epipolar line
of DLR from left side to right side, each sudden depth decrement corresponds
to an occlusion in DRL. Similarly, scanning any epipolar line of DRL from right
side to left side, each sudden depth increment corresponds to an occlusion in
DLR. Moreover, the occlusion width is directly proportional to the amount of
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Fig. 1. Points violating (9) on DLR and DRL (colored points, left and center) are
discriminated between occlusions (yellow) and false matches (green) on Tsukuba and
Cones datasets. Consequently depth borders are detected (red points, right) [This
Figure is best viewed with colors].

each depth decrement and increment along the correspondent epipolar line, and
the two points composing a depth border on one disparity map respectively
correspond to the starting point and ending point of the occluded area in the
other map.

Hence, in order to detect occlusions and depth borders, we deploy a symmet-
rical cross-checking strategy, which detects the disparities in DLR which violate
a weak disparity consistence constraint by tagging as invalid all points pd ∈ DLR

for which:
|DLR(pd) − DRL (pd − DLR (pd)) | ≤ 1 (9)

and analogously detects invalid disparities on DRL. Points referring to disparity
differences equal to 1 are not tagged as invalid at this stage as we assume that
occlusions are not present where disparity varies smoothly along the epipolar
lines, as well as to handle slight discrepancies due to the different view points.
The results of this symmetrical cross-checking are shown, referred to Tsukuba
and Cones, on the left and center images of Fig. 1, where colored points in both
maps represent the disparities violating (9). It is easy to infer that only a subset
of the colored regions of the maps is represented by occlusions, while all other
violating disparities denote mismatches due to outliers.

Hence, after cross-checking the two disparity maps DLR and DRL, it is possi-
ble to discriminate on both maps occluded areas from incorrect correspondences
(respectively yellow and green points on left and center image, Fig. 1) by means
of application of the constraints described previously. Then, putting in corre-
spondence occlusions on one map with homologous depth discontinuities in the
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other map, it is possible to reliably localize depth borders generated by occlusions
on both disparity maps (details of this method are not provided here due to the
lack of space). Right images on Fig. 1 show the superimposition of the detected
borders referred to DLR (in red color) on the corresponding grayscale stereo
image. As it can be seen, borders along epipolar lines are detected with notable
precision and very few outliers (detected borders which do not correspond to
real borders) are present.

Fig. 2. The reliability of assigning disparities to points violating the strong cross-
checking (10) along depth borders (green points, left) is increased by exploiting infor-
mation on depth borders location (red points, center) compared to a situation where
this information is not available (right)

6 Refinement by Means of Detected Depth Borders and
Segmentation

Depth border detection is employed in order to determine the correct disparity
values to be assigned to points violating cross-checking. In particular, a two-step
refinement process is now proposed, which exploits successively segmentation
and depth border information in order to fill-in, respectively, low textured areas
and regions along depth discontinuities.

First of all, the following strong cross-checking consistency constraint is ap-
plied on all points of DLR:

DLR(pd) =
{

DLR(pd) DLR(pd) �= DRL (pd − DLR(pd))
invalid otherwise

(10)

The first step of the proposed refinement approach employs segmentation infor-
mation in order to fill-in regions of DLR denoted as invalid after application of
(10). In particular, for each segment extracted from the application of the Mean
Shift algorithm, a disparity histogram is filled with all valid disparities included
within the segment area. Then, if a unique disparity value can be reliably associ-
ated with that segment, i.e. if there is a minimum number of valid disparities in
the histogram and its variance is low, the mean disparity value of the histogram
is assigned to all invalid points falling within the segment area. This allows to
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correctly fill-in uniform areas which can be easily characterized by mismatches
during the correspondence search.

As this first step is designed to fill-in only invalid points within uniform ar-
eas, then a second step allows to fill-in the remaining points by exploiting the
previously extracted information on border locations, especially along depth
border regions which usually are not characterized by uniform areas. In par-
ticular, the assigned disparity value for all invalid points near to depth discon-
tinuities is chosen as the minimum value between neighbours which do not lie
beyond a depth border. This allows to increase the reliability of the assigned
values compared to the case of no information on borders location, where e.g.
the minimum value between neighbouring disparities is selected, as shown in
Fig. 2.

7 Experimental Results

This section shows an experimental evaluation obtained by submitting on the
Middlebury site the results yielded by the proposed algorithm. The parameter
set of the algorithm is constant for all runs and is the same as for the experiments
in Sec. 4. As it can be seen from Table 2, our algorithm (SO+border), which
ranked 4th (as of May 2007), produces overall better results compared to [16],
which employs a higher number of scanlines during the SO process, and also com-
pared to the other SO and DP-based approaches and most global methods, for
higher accuracy is only yielded by three BP-based global algorithms. Obtained
disparity maps, together with corresponding reference images and groundtruth
are shown in Fig. 3 and are available at the Middlebury website. The running
time on the examined dataset is of the order of those of other methods based
on a variable support [21], [2] (i.e. some minutes) since the majority of time
is required by the local cost computation, while the S.O. stage and the border
refinement stage only account for a few seconds and are negligible compared to
the overall time.

Table 2. Disparity error rates and rankings obtained on Middlebury website

Rank Tsukuba Venus Teddy Cones
N.O.-ALL-DISC N.O.-ALL-DISC N.O.-ALL-DISC N.O.-ALL-DISC

AdaptingBP [12] �1 1.11-1.37-5.79 0.10-0.21-1.44 4.22-7.06-11.8 2.48-7.92-7.32
DoubleBP [10] �2 0.88-1.29-4.76 0.14-0.60-2.00 3.55-8.71-9.70 2.90-9.24-7.80
SymBP+occ �3 0.97-1.75-5.09 0.16-0.33-2.19 6.47-10.7-17.0 4.79-10.7-10.9
SO+border �4 1.29-1.71-6.83 0.25-0.53-2.26 7.02-12.2-16.3 3.90-9.85-10.2
Segm+visib [13] �5 1.30-1.57-6.92 0.79-1.06-6.76 5.00-6.54-12.3 3.72-8.62-10.2
C-SemiGlob [16] �6 2.61-3.29-9.89 0.25-0.57-3.24 5.14-11.8-13.0 2.77-8.35-8.20
RegionTreeDP [19] �10 1.39-1.64-6.85 0.22-0.57-1.93 7.42-11.9-16.8 6.31-11.9-11.8
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Fig. 3. Disparity maps obtained after the application of all steps of the proposed
approach

8 Conclusions

A novel algorithm for solving the stereo correspondence problem has been de-
scribed. The algorithm employs an effective variable-support based approach in
the aggregation stage together with a SO-based framework in the disparity op-
timization stage. This joint strategy allows for improving the accuracy of both
SO-based and local variable-support based methods. Further improvements are
obtained by embodying the disparity refinement stage with border information
and segmentation, which allows our proposal to outperform all DP and SO-based
approaches as well as most global approaches on the Middlebury dataset.
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