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Abstract. This paper is aimed at investigating background subtraction
based on second-order polynomial models. Recently, preliminary results
suggested that quadratic models hold the potential to yield superior per-
formance in handling common disturbance factors, such as noise, sudden
illumination changes and variations of camera parameters, with respect
to state-of-the-art background subtraction methods. Therefore, based on
the formalization of background subtraction as Bayesian regression of a
second-order polynomial model, we propose here a thorough theoretical
analysis aimed at identifying a family of suitable models and deriving
the closed-form solutions of the associated regression problems. In addi-
tion, we present a detailed quantitative experimental evaluation aimed
at comparing the different background subtraction algorithms resulting
from theoretical analysis, so as to highlight those more favorable in terms
of accuracy, speed and speed-accuracy tradeoff.

1 Introduction

Background subtraction is a crucial task in many video analysis applications,
such as e.g. intelligent video surveillance. One of the main challenges consists
in handling disturbance factors such as noise, gradual or sudden illumination
changes, dynamic adjustments of camera parameters (e.g. exposure and gain),
vacillating background, which are typical nuisances within video-surveillance sce-
narios. Many different algorithms for dealing with these issues have been pro-
posed in literature (see [1] for a recent survey). Popular algorithms based on sta-
tistical per-pixel background models, such as e.g. Mixture of Gaussians (MoG) [2]
or kernel-based non-parametric models [3], are effective in case of gradual illu-
mination changes and vacillating background (e.g. waving trees). Unfortunately,
though, they cannot deal with those nuisances causing sudden intensity changes
(e.g. a light switch), yielding in such cases lots of false positives.

Instead, an effective approach to tackle the problem of sudden intensity
changes due to disturbance factors is represented by a priori modeling over small
image patches of the possible spurious changes that the scene can undergo. Fol-
lowing this idea, a pixel from the current frame is classified as changed if the
intensity transformation between its local neighborhood and the corresponding
neighborhood in the background can not be explained by the chosen a priori
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model. Thanks to this approach, gradual as well as sudden photometric distor-
tions do not yield false positives provided that they are explained by the model.
Thus, the main issue concerns the choice of the a priori model: in principle,
the more restrictive such a model, the higher is the ability to detect changes
(sensitivity) but the lower is robustness to sources of disturbance (specificity).
Some proposals assume disturbance factors to yield linear intensity transfor-
mations [4,5]. Nevertheless, as discussed in [6], many non-linearities may arise
in the image formation process, so that a more liberal model than linear is of-
ten required to achieve adequate robustness in practical applications. Hence,
several other algorithms adopt order-preserving models, i.e. assume monotonic
non-decreasing (i.e. non-linear) intensity transformations [6-9].

Very recently, preliminary results have been proposed in literature [10, 11]
that suggest how second-order polynomial models hold the potential to yield
superior performance with respect to the classical previously mentioned ap-
proaches, being more liberal than linear proposals but still more restrictive than
the order preserving ones. Motivated by these encouraging preliminary results,
in this work we investigate on the use of second-order polynomial models within
a Bayesian regression framework to achieve robust background subtraction. In
particular, we first introduce a family of suitable second-order polynomial mod-
els and then derive closed-form solutions for the associated Bayesian regression
problems. We also provide a thorough experimental evaluation of the algorithms
resulting from theoretical analysis, so as to identify those providing the highest
accuracy, the highest efficiency as well as the best tradeoff between the two.

2 Models and solutions

For a generic pixel, let us denote as x = (1, ... ,xn)T andy = (y1, ... ,yn)T the
intensities of a surrounding neighborhood of pixels observed in the two images
under comparison, i.e. background and current frame, respectively. We aim at
detecting scene changes occurring in the pixel by evaluating the local intensity
information contained in x and y. In particular, classification of pixels as changed
or unchanged is carried out by a priori assuming a model of the local photometric
distortions that can be yielded by sources of disturbance and then testing, for
each pixel, whether the model can explain the intensities x and y observed in the
surrounding neighborhood. If this is the case, the pixel is likely sensing an effect
of disturbs, so it is classified as unchanged; otherwise, it is marked as changed.

2.1 Modeling of local photometric distortions

In this paper we assume that main photometric distortions are due to noise,
gradual or sudden illumination changes, variations of camera parameters such as
exposure and gain. We do not consider here the vacillating background problem
(e.g. waving trees), for which the methods based on multi-modal and temporally
adaptive background modeling, such as [2] and [3], are more suitable.
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As for noise, first of all we assume that the background image is computed by
means of a statistical estimation over an initialization sequence (e.g. temporal
averaging of tens of frames) so that noise affecting the inferred background inten-
sities can be neglected. Hence, x can be thought of as a deterministic vector of
noiseless background intensities. As for the current frame, we assume that noise
is additive, zero-mean, i.i.d. Gaussian with variance o2. Hence, noise affecting
the vector y of current frame intensities can be expressed as follows:

p(519) = Tl = [[ V(5. 0%) = (VEro) oo~ 2553 (- ) (1
=1 i=1

202
i—1

where ¥ = (§1,...,7n)" denotes the (unobservable) vector of current frame
noiseless intensities and N'(u1, 0%) the normal pdf with mean p and variance o2.

As far as remaining photometric distortions are concerned, we assume that
noiseless intensities within a neighborhood of pixels can change due to variations
of scene illumination and of camera parameters according to a second-order

polynomial transformation ¢(-), i.e.:
gi = (i)(l’l, 0) = (]., Xy, .’E?) (90, 917 02)T: 9()+ 91xi + 02$i2 VZ = ].7 Loy n (2)

It is worth pointing out that the assumed model (2) does not imply that the
whole frame undergoes the same polynomial transformation but, more gener-
ally, that such a constraint holds locally. In other words, each neighborhood of
intensities is allowed to undergo a different polynomial transformation, so that
local illumination changes can be dealt with.

From (1) and (2) we can derive the expression of the likelihood p(x,y|0),
that is the probability of observing the neighborhood intensities x and y given
a polynomial model 6:

s (i~ 0l 0))°)
- 3)

where the first equality follows from the deterministic nature of the vector x
that allows to treat it as a vector of parameters.

In practice, not all the polynomial transformations belonging to the linear
space defined by the assumed model (2) are equally likely to occur. In Figure (1),
on the left, we show examples of less (in red) and more (in azure) likely trans-
formations. To summarize the differences we can say that the constant term of
the polynomial has to be small and that the polynomial has to be monotonic
non-decreasing. We formalize these constraints by imposing a prior probabil-
ity on the parameters vector 8 = (0, 01,6)7, as illustrated in Figure (1), on
the right. In particular, we implement the constraint on the constant term by
assuming a zero-mean Gaussian prior with variance o3 for the parameter 6:

p(0o) = N(0,05) (4)

The monotonicity constraint is addressed by assuming for (#y,62) a uniform
prior inside the subset @15 of R? that renders ¢'(z;0) = 6 + 205 - x > 0 for all

p(x,y10) = p(y]0;x) = p(y|y =¢(x;0)) = (\/ﬂa)_gXpG
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Fig. 1. Some polynomial transformations (left, in red) are less likely to occur in practice
than others (left, in azure). To account for that, we assume a zero-mean normal prior
for 6o, a prior that is uniform inside ©12, zero outside for (01,02) (right).

260,:0,+2G0,=0,0,< 0

x € [0, G], with G denoting the highest measurable intensity (G = 255 for 8-bit
images), zero probability outside ©@12. Due to linearity of ¢’(z), the monotonicity
constraint ¢'(x;0) > 0 over the entire z-domain [0 , G] is equivalent to impose
monotonicity at the domain extremes, i.e. ¢'(0;0) = 6; > 0 and ¢'(G;0) =
01 + 2G - 03 > 0. Hence, we can write the constraint as follows:

k if (01,05) € ©10={(61,02) ER?*: 6;>0 A 61+2G6,>0} 5
0 otherwise

plon. ) = { )

We thus obtain the prior probability of the entire parameters vector as follows:

p(8) = p(0o) - p(61,02) (6)

In this paper we want to evaluate six different background subtraction al-
gorithms, relying on as many models for photometric distortions obtained by
combining the assumed noise and quadratic polynomial models in (1) and (2),
that imply (3), with the two constraints in (4) and (5). In particular, the six
considered algorithms (Q stands for quadratic) are:

Qo : (1) A(2) = (3) plus prior (4) for 8y with 0’§ — 00 (6 free);
Qy : (1) A (2) = (3) plus prior (4) for 6y with g finite positive;
Qo : (1) A (2) = (3) plus prior (4) for 6y with 0§ — 0 (6y = 0);

Qoo,ar : same as Qo plus prior (5) for (A1, 63) (monotonicity constraint);
Qs v : same as Qg plus prior (5) for (61, 62) (monotonicity constraint);
Qo,m : same as Qo plus prior (5) for (61, 62) (monotonicity constraint);

2.2 Bayesian polynomial fitting for background subtraction

Independently from the algorithm, scene changes are detected by computing a
measure of the distance between the sensed neighborhood intensities x, y and
the space of models assumed for photometric distortions. In other words, if the
intensities are not well-fitted by the models, the pixel is classified as changed. The
minimum-distance intensity transformation within the model space is computed
by a maximum a posteriori estimation of the parameters vector:

Oviap = argmaz p(0lx,y) = argmaz [p(x,y|0)p(0)) (7)
6 cR3 6 cR3
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where the second equality follows from Bayes rule. To make the posterior in (7)
explicit, an algorithm has to be chosen. We start from the more complex one,
ie. Qp am. By substituting (3) and (4)-(5), respectively, for the likelihood
p(x,y|0) and the prior p(@) and transforming posterior maximization into minus
log-posterior minimization, after eliminating the constant terms we obtain:

Oriap = aggmé'n [E(G; X,y) = d(0;%,y) +7(0) =) (i — b(:;0))*+ /\93] (8)
S i=1

The objective function to be minimized E(0;x,y) is the weighted sum of a
data-dependent term d(0;x,y) and a regularization term r(6) which derive, re-
spectively, from the likelihood of the observed data p(x,y|@) and the prior of
the first parameter p(6p). The weight of the sum, i.e. the regularization coeffi-
cient, depends on both the likelihood and the prior and is given by A=02/03.
The prior of the other two parameters p(6;,62) expressing the monotonicity con-
straint has translated into a restriction of the optimization domain from R3 to
O =R x O15. It is worth pointing out that the data dependent term represents
the least-squares regression error, i.e. the sum over all the pixels in the neighbor-
hood of the square differences between the frame intensities and the background
intensities transformed by the model. By making ¢(x;; 0) explicit and after sim-
ple algebraic manipulations, it is easy to observe that the objective function is
quadratic, so that it can be compactly written as:

E0:;x,y) = (1/2)0"HO —bT0 + ¢ (9)
with the matrix H, the vector b and the scalar ¢ given by:
N Sz Sz? Sy
H=2|Sz Sz* Sa3 b =2 Szy c = Sy? (10)
Sz? Sz Szt Sx2y

and, for simplicity of notation:

n n n n
Sz = E z; Sz?= E 7 Sad = E 3 Szt = E x}
i=1 i=1 i=1 i=1

n n n n
Sy=> "y Say=> muy; Sx*y=> aly Sy*=> y?
i=1 =1 i=1 i=1

As for the optimization domain © = R x @19, with ©15 defined in (5) and
illustrated in Figure 1, it also can be compactly written in matrix form as follows:

N=n+A (11)

3. . _ (0 10
©={6ecR*: Z0>0} with Z= <0 1 2G> (12)
The estimation problem (8) can thus be written as a quadratic program:

Oriap = argmin [(1/2) 6"H 6 —bTo + |
Z6>0



6 A. Lanza, F. Tombari, L. Di Stefano

If in the considered neighborhood there exist three pixels characterized by differ-
ent background intensities, i.e. 34,5,k : x; # x; # x, it can be demonstrated
that the matrix H is positive-definite. As a consequence, since H is the Hessian
of the quadratic objective function, in this case the function is strictly convex.
Hence, it admits a unique point of unconstrained global minimum 0 that
can be easily calculated by searching for the unique zero-gradient point, i.e. by
solving the linear system of normal equations:

0 =0cR: VEB)=0 = (H/2)0=(b/2) (14)
for which a closed-form solution is obtained by computing the inverse of H/2:

1 A D FE Sy
0™ = (H/2) " (b/2) = Al D B F SJJQy (15)
E F C)\Szy

where:
A= Sa25z* — (52%)°  B=NSz'—(S22)°  C=NSz?—(Sx)?

(16)
D = Sz2Sz3 — Sz Sz E =S8z Sz% — (Sm2)2 F =8z Sz> - NSz?

and
|H/2| = NA+ Sz D + S2*F (17)

If the computed point of unconstrained global minimum o belongs to
the quadratic program feasible set ©, i.e. satisfies the monotonicity constraint
Z 6 > 0, then the minimum distance between the observed neighborhood inten-
sities and the model of photometric distortions is simply determined by substi-
tuting 0™ for 0 in the objective function. A compact close-form expression for
such a minimum distance can be obtained as follows:

E@ = BO™) = 0™ (H/2)0™ — 6D 1+ =0 (b/2) — b + ¢
—c— 0™ (b/2) = Sy?— |H/2| " (Sy o™+ Szy 6, + Sy 0M)  (18)

The two algorithms Q 5 and Qo rely on the computation of the point of uncon-
strained global minimum o by (15) and, subsequently, of the unconstrained
minimum distance E(®) = E(0™)) by (18). The only difference between the two
algorithms is the value of the pre-computed constant N = n + A that in Q
tends to n due to 02 — oo causing A — 0. Actually, Q ¢ corresponds to the
method proposed in [10].

If the point ™) falls outside the feasible set ©, the solution 8° of the
constrained quadratic programming problem (13) must lie on the boundary of
the feasible set, due to convexity of the objective function. However, since the
monotonicity constraint Z @ > 0 does not concern 6y, again the partial derivative
of the objective function with respect to 6y must vanish in correspondence of
the solution. Hence, first of all we impose this condition, thus obtaining:

00) = (1/N) (Sy — 615z — 6252?) (19)
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We thus substitute 90(0) for 6y in the objective function, so that the original 3-d
problem turns into a 2-d problem in the two unknowns 6#;, 65 with the feasible
set ©15 defined in (5) and illustrated in Figure 1, on the right. As previously
mentioned, the solution of the problem must lie on the boundary of the feasible
set 0014, that is on one of the two half-lines:

001: 01 =0 AN 60,>0 005: 01 =—2G0; N 0, <0 (20)

The minimum of the 2-d objective function on each of the two half-lines can be
determined by replacing the respective line equation into the objective function
and then searching for the unique minimum of the obtained 1-d convex quadratic
function in the unknown 69 restricted, respectively, to the positive (00;) and
the negative (0602) axis. After some algebraic manipulations, we obtain that the

two minimums EP and Eéc) are given by:

(Sy)? T o rso (Sy)? Y v<o
E]Ec) — Sy2_ _ NB EéC) — Sy?_ _

NU
Nolo itT<o Nolo itvso
(21)
where:
T = N Sz2y — S22Sy V=T+2GW (22)
W = SxSy— N Sxy U= B+4G?’C+4GF

The constrained global minimum E(®) is thus the minimum between Eic) and

Eéc). Hence, similarly to Q s and Q o, the two algorithms Q ¢, ;s and Q oo, ar rely
on the preliminary computation of the point of unconstrained global minimum
o by (15). However, if the point does not satisfy the monotonicity constraint
n (12), the minimum distance is computed by (21) instead of by (18). The two
algorithms Q ¢, a7 and Q o, ps differ in the exact same way as Q ¢y and Q o, i.e.
only for the value of the pre-computed parameter N.

The two remaining algorithms, namely Qo and Q o_ s, rely on setting o3 — 0.
This implies that A — co and, therefore, N = (n + A) — co. As a consequence,
closed-form solutions for these algorithms can not be straightforwardly derived
from the previously computed formulas by simply substituting the value of V.
However, 02 — 0 means that the parameter 6 is constrained to be zero, that is
the quadratic polynomial model is constrained to pass through the origin. Hence,
closed-form solutions for these algorithms can be obtained by means of the same
procedure outlined above, the only difference being that in the model (2) 6y has
to be eliminated. Details of the procedure and solutions can be found in [11].

By means of the proposed solutions, we have no need to resort to any iterative
approach. In addition, it is worth pointing out that all terms involved in the
calculations can be computed either off-line (i.e. those involving only background
intensities) or by means of very fast incremental techniques such as Summed
Area Table [12] (those involving also frame intensities). Overall, this allows the
proposed solutions to exhibit a computational complexity of O(1) with respect
to the neighborhood size n.
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Fig. 2. Top: AUC values yielded by the evaluated algorithms with different neighbor-
hood sizes on each of the 5 test sequences. Bottom: average AUC (left) and FPS (right)
values over the 5 sequences.

3 Experimental results

This Section proposes an experimental analysis aimed at comparing the 6 dif-
ferent approaches to background subtraction based on a quadratic polynomial
model derived in previous Section. To distinguish between the methods we will
use the notation described in the previous Section. Thus, e.g., the approach pre-
sented in [10] is referred to here as Q¢, and that proposed in [11] as Qo ar. All
algorithms were implemented in C using incremental techniques [12] to achieve
O(1) complexity. They also share the same code structure so to allow for a fair
comparison in terms not only of accuracy, but also computational efficiency.
Evaluated approaches are compared on five test sequences, S1—S5, charac-
terized by sudden and notable photometric changes that yield both linear and
non-linear intensity transformations. We acquired sequences S;—S4 while S5 is a
synthetic benchmark sequence available on the web [13]. In particular, Sy, So are
two indoor sequences, while S3, S4 are both outdoor. It is worth pointing out that
by computing the 2-d joint histograms of background versus frame intensities,
we observed that Sy, S5 are mostly characterized by linear intensity changes,
while S3—S, exhibit also non-linear changes. Background images together with
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sample frames from the sequences are shown in [10,11]. Moreover, we point out
here that, based on an experimental evaluation carried out on S-S5, methods
Q and Qo,ar have been shown to deliver state-of-the-art performance in [10,11].
In particular, Q¢ and Qo ps yield at least equivalent performance compared to
the most accurate existing methods while being, at the same time, much more
efficient. Hence, since results attained on S;—-S5 by existing linear and order-
preserving methods (i.e. [5,7-9]) are reported in [10,11], in this paper we focus
on assessing the relative merits of the 6 developed quadratic polynomial

Experimental results in terms of accuracy as well as computational efficiency
are provided. As for accuracy, quantitative results are obtained by comparing
the change masks yielded by each approach against the ground-truths (manu-
ally labeled for S;-Sy, available online for S;). In particular, we computed the
True Positive Rate (TPR) versus False Positive Rate (FPR) Receiver Operating
Characteristic (ROC) curves. Due to lack of space, we can not show all the com-
puted ROC curves. Hence, we summarize each curve with a well-known scalar
measure of performance, the Area Under the Curve (AUC), which represents the
probability for the approach to assign a randomly chosen changed pixel a higher
change score than a randomly chosen unchanged pixel [14].

Each graph shown in Figure 2 reports the performance of the 6 algorithms
in terms of AUC with different neighborhood sizes (3x3, 5x5, ---, 13x13). In
particular, the first 5 graphs are relative to each of the 5 testing sequences,
while the two graphs on the bottom show, respectively, the mean AUC values
and the mean Frame-Per-Second (FPS) values over the 5 sequences. By analyzing
AUC values reported in the Figure, it can be observed that two methods yield
overall a better performance among those tested, that is, Qo,ar and Qy,ar, as also
summarized by the mean AUC graph. In particular, Q) s is the most accurate
on Sy and S5 (where Qo ar is the second best), while Qo as is the most accurate
on Sy and Sy (where Gy s is the second best). The different results on Ss, where
(o is the best performing method, appear to be mainly due to the presence of
disturbance factors (e.g. specularities, saturation, ...) not well modeled by a
quadratic transformation: thus, the best performing algorithm in such specific
circumstance turns out to be the less constrained one (i.e. Qo).

As for efficiency, the mean FPS graph in Figure 2 proves that all methods
are O(1) (i.e. their complexity is independent of the neighborhood size). As ex-
pected, the more constraints are imposed on the adopted model, the higher the
computational cost is, resulting in a reduced efficiency. In particular, an addi-
tional computational burden is brought in if a full quadratic form is assumed (i.e.
not homogeneous), similarly if the transformation is assumed to be monotonic.
Given this consideration, the most efficient method turns out to be Qq, the least
efficient ones Quo,a1, @ 01, With Qoo, Qo,nr, @ staying in the middle. Also, the
results prove that the use of a non-homogeneous form adds a higher computa-
tional burden compared to the monotonic assumption. Overall, the experiments
indicate that the method providing the best accuracy-efficiency tradeoft is Qo as-
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4 Conclusions

We have shown how background subtraction based on Bayesian second-order
polynomial regression can be declined in different ways depending on the nature
of the constraints included in the formulation of the problem. Accordingly, we
have derived closed-form solutions for each of the problem formulations. Experi-
mental evaluation show that the most accurate algorithms are those based on the
monotonicity constraint and, respectively a null Qo s or finite Qs ys variance for
the prior of the constant term. Since the more articulated the constraints within
the problem the higher computational complexity, the most efficient algorithm
results from a non-monotonic and homogeneous formulation (i.e. Qp). This also
explains why Qo s is notably faster than Q) as, so as to turn out the method
providing the more favorable tradeoff between accuracy and speed.
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