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Abstract

This paper proposes a novel technique for performing
fast block matching for motion estimation which is optimal,
meaning it yields the same results as a full-search investi-
gation. The proposed technique derives from an approach
previously proposed [10] for template matching and it is
based on the deployment of a succession of lower bounding
functions of the matching metric. Hence, an algorithm is
outlined which efficiently exploits these bounding functions
in order to rapidly determine non-matching block candi-
dates, thus reducing the overall computational burden. Ex-
perimental results show that, compared to the brute-force
approach, the proposed technique allows for notable re-
ductions in terms of number of operations and computation
times.

1. Introduction

Block matching is a common approach adopted in com-
puter vision, in particular for the purpose of motion esti-
mation for video compression, whose aim is to reduce tem-
poral redundancy in video sequences. Let {I,, I} be two
consecutive frames of a video sequence, and let I,. be subdi-
vided into non-overlapping blocks, i.e. subwindows of size
N x N. Block matching aims at finding for each block of
frame I, the most similar block in frame I;. Usually each
block is not sought on the whole frame, but on a search area
centred at the position of the block in frame I,..

The brute-force approach (BF) for block matching re-
lies on comparing each block of I,. with all possible candi-
date blocks belonging to the corresponding search area in
I; by computing a distance between blocks. The most com-
monly used distance for this scope is the Sum of Absolute

Differences (SAD). Once the distances between the refer-
ence block and the candidate blocks have been computed,
the best matching block is selected as the one correspond-
ing to the minimum distance value found within the search
area. Since this approach turns out to be computationally
expensive, many techniques have been proposed in the last
two decades with the aim of accelerating the BF (see [4] for
a survey). These alternative approaches are usually denoted
as either optimal or non-optimal, given they yield or not the
same result as the BF. Non-optimal techniques [6], [9] usu-
ally reduce the search area in order to save computations,
hence they don’t guarantee the requirement of finding, for
each block, the candidate block at the globally minimum
distance within the search area. As a result, they tend to in-
crease the distortion of the compressed video signal. Con-
versely, optimal techniques aim at accelerating the BA by
selecting rapidly and safely many non-matching candidate
blocks, so as to discard them without the need of comput-
ing the distance function. Non-matching candidate blocks
are usually selected by means of lower bounds of the dis-
tance function [5], [3], [7].

This paper proposes a novel technique for optimal block
matching. This technique derives from an approach previ-
ously proposed [10] for template matching which deploys a
succession of lower bounds of the distance function char-
acterized by increasing tightness and computational cost.
These lower bounding functions are obtained by means of a
partitioning of the blocks into non-overlapping subsets and
by means of the concept of partial distance, which will be
discussed in the following. The bounding functions are then
deployed in an efficient matching scheme which turns out to
speed-up significantly the BF.

This paper is structured as follows. Section 2 presents
the notation and some previous work. Section 3 describes
the proposed technique. Section 4 shows the experimen-

IEE I-'

COMPUTER
SOCIETY

14th International Conference on Image Analysis and Processing (ICIAP 2007)
0-7695-2877-5/07 $25.00 © 2007 IEEE



tal results obtained on typical benchmark video sequences.
Finally, Section 5 draws the conclusions.

2. Notation and previous work

Let I,.(x,y) be the reference frame, and I;(x,y) be the
target frame where the block candidates are extracted. Let
the block be of size N x N and the search area on the target
frame be of size M x M. Given the current block of the ref-
erence frame at coordinates (Z, 3), the BF usually computes
for every candidate block belonging to the search area, i.e.
Yu,v € [1,---, M], a distance between the current refer-
ence block and the candidate block:

N N
Dp(fagvuav) = ZZ |Ir(f+i7g+j)_
i=1 j=1
L(z+u+ig+v+j)| (1)

Usually p = 1 and D,(Z, ¥y, u,v) coincides with the
SAD function. Then the best matching offset position
(U, Uy ) is selected as the one corresponding to the global
distance minimum, i.e.:

(U, V) = arg  min

Do,y 2
u,ve[L.,,’M]{ o (Z, 7, u,v)} 2)

The triangular inequality applied to the distance func-
tion (1) leads to:

N N
Dy(@,5,u,0) = [[D D L@ +i,5+ )] 7 -

i=1 j=1

N N
ZZ L(@+u+i,g+v+5)F]

<=

RNE)

Hence, the right-hand term of inequality (3) is a lower
bounding function for the distance term. We will refer to it
as (. In the case p = 1, 8; equals:

N N
B (Z, 7, u ZZIIT(MMH)I—
=1 j=1

ZZIMMHL@HH)I! 4)

i=1 j=1

which can be obtained by summing all elements of the
reference block and candidate block. For this reason, this is
a term which can be rapidly computed by means of incre-
mental techniques such as [8], [2]. Term 3, can be used to

select non-matching candidate blocks by testing, for each
candidate block, the following sufficient condition before
the computation of the distance term:

Bp(Z,Y, u,v) > Dy, (%)

with D,,, representing the minimum distance value found

so far. If condition (5) is verified, then 3, can not represent

the global best match due to (3): hence, it can be discarded

and term D, needs not to be evaluated. Conversely, if con-

dition (5) doesn’t hold, term D,, is computed from scratch.

The use of 3; as a bounding function of the L, distance

to speed-up an optimal block matching process has already
been proposed in [7].

3. Proposed algorithm

In the following a set of additional lower bounding func-
tions for the distance term is derived. As it will be shown,
these lower bounding functions are tighter to the distance
term compared to (3,, but they are also computationally
more demanding. Hence, for all candidate blocks for whom
condition (5) doesn’t hold, instead of computing D,, from
scratch we propose to deploy such additional conditions
in order to increase the number of discarded non-matching
blocks.

First of all, we propose to partition each block into r
non-overlapping subsets. Even though there are no particu-
lar constraints about how to partition the blocks, according
to the implementation that will be used to obtain the exper-
imental results we propose to partition the blocks by rows.
Furthermore, as the block side is typically a power-of-two
value, we propose to choose r between any power-of-two
submultiples of the block side which allows for subsets hav-
ing all the same size N X % This allows increasing the
overall computational efficiency of the technique, as it will
be shown further on. In the following we will refer to the
generic subset height as n, i.e. n = %

Hence, given a block of I,. at position (Z, %), and a candi-
date block of I at offset (u, v), once r is chosen, a generic
partial bound term computed on subset ¢,¢ € [1,---, 7] can
be defined as:

N n-t
(@, g.a,0) = [[D D

i=1 j=1+4n-(t—1)

> 5

=1 j=14n-(t—1)

'dl’-‘

|1 (2 + 1, y+])| |7 -

1

L@+u+ig+o+5)|]"[" ©
Similarly, a generic partial distance term computed on

subsett,t € [1,-- -, 7] can be defined as:

n-t

D, 5:3]1117:2 >

i=1 j=14n-(t—1)

Lo (2 + 14,5+ )~
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LE+ua+ig+o+4)[" D

It is important to note that from the property of the trian-
gular inequality the following relation holds for each subset
t:

Dy (%, y,1,0) > ap(Z,7,0,0) (®)

Hence, a novel lower bounding function of the distance
term can be obtained by summing up all the r partial bound
terms computed on each subset of the block:

T

ﬁp,r(fvgaﬂaﬁ) = Zap,t(fvgvﬁaﬁ) 9

t=1

The fact that (9) represents a lower bound for the dis-
tance term D), is guaranteed by the triangular inequality and
because:

r
D;D(i.agvﬁvﬁ):ZDp,t(i.vgaﬂaﬁ) (10)
t=1

It is worth pointing out that also term 3, ,, similarly to
term /3, can be computed rapidly by means of incremental
techniques. This is because each partial bound term repre-
sents a summation of the elements of the image on a subset
of a block. In particular, as the size of all subsets is the
same, only one incremental scheme is needed. The compu-
tation of 3, , needs more calculations compared to 3, due
to the computation and sum of the single partial bounds em-
bodied in (9). Nevertheless, with p = 1,2, 3, , represents
a closer approximation of the distance term D,, compared
to 3, [10]. Hence it has to be applied, testing the following
sufficient condition (11), on those candidate blocks which
during the block matching process were not previously re-
jected by the sufficient condition derived from 3.

ﬁpﬂ“(jvgvaa 'E) > Dm (11)

Now, for all candidate blocks which are not rejected by
(11), tighter lower bounding functions can be derived by
computing one or more partial distance terms on the various
subsets. In particular, by replacing the partial bound term
a1 with the corresponding partial distance term D), ; we
determine a further lower bounding function as:

T
Bp,r—l(j; ?; ’0’7 T)) = Dp71('ia g7 17,, T)) + Z ap,t(j7 gv 17,, 17)
t=2
(12)
Term (3, ,—1 represents a closer approximation of the
distance term D, compared to term 3, ,.. In fact, since
O‘p,l(fvgaﬂaﬁ) < Dp,l(fvgaﬂaﬁ) (13)

the following inequalities hold:

Bp,r(Z,9,1,0) < Bpr—1(Z,9,u,0) < Dp(Z,y,u,0)
(14)
Unfortunately, term 3, 1 is also more demanding in
terms of computations compared to term (3, , as it incor-
porates a partial distance term which can not be computed
by means of incremental schemes. However, it has to be
computed only for those candidate blocks which were not
discarded by the application of bound 3, ;.. As a result, the
sufficient condition derived from bound 3, 1 is:

5;0,7*71(:2.7@;17*;6) > Dm (15)

By increasingly replacing each partial bound term with
the corresponding partial distance term computed on the
same subset other lower bounding functions can be de-
termined, which are characterised by increasing tightness
to the distance term and increasing computational weight.
However, as previously, each bounding function has to be
applied only to those candidate blocks which were not dis-
carded by the sufficient condition tested at the previous step.
Following this approach, up to r sufficient conditions can be
tested, associated with terms 3, ,, - - -, Bp 1. The last lower
bounding function contains only one residual partial bound
term:

r—1
Bo (Z,5,1,0) = Y Dy o(Z,5,1,0) + a0 (Z, 7,1, D)
t=1
(16)
Hence, if the associated sufficient condition
Bp1(Z,y,u,0) > Dy, (17)

doesn’t hold, that is, the current candidate block can not
be safely discarded even by means of this last test, the com-
putation of the distance term D, is completed by calculating
the partial distance term corresponding to the r — th (last)
subset and D, is then compared with D,,,.

It is worth noting that the lower bounding functions
can be computed iteratively. That is, each lower bound
needs the computation of a single partial distance term,
plus two addition operations in order to update the bound
value adopted at the previous step. It is also interesting to
note that the adoption of any different partitioning scheme
which maintains the subdivision of the blocks into equally
sized subsets would perform similarly and would require
the same memory footprint. The choice of r turns out to
be a parameter of the proposed technique. Increasing r
would mean having lower bounding functions which better
approximate the distance term, but would also need more
computations for their calculations. As for block matching
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the size of the blocks is typically N = {8,16}, we exper-
imentally found out that in most cases the best results are
obtained by choosing r equal to {4, 8}.

Furthermore it is important to point out that the perfor-
mances of our method are affected by the initial value of
D,,,. In fact, if D,, is initialized with a value close to the
global minimum of the distance function to be found in the
search area, the sufficient conditions embodied in the pro-
posed approach have good chances to discard a high num-
ber of non-optimal candidate blocks. Conversely, if D,, is
initialized e.g. to the maximum value which the distance
can assume, no blocks can be discarded within the initial
positions until a local minimum is found. For this reason,
a simple but effective improvement to the outlined method
is to initialize D, to Dy, o, that is the distance value cor-
responding to the candidate block at offset (u,v) = (0,0).
We also propose an alternative approach, that is to initial-
ize D,, to the global minimum corresponding to the best
matching offset position found at the previous frame for the
same block, Dy, . In order to deploy this, the technique
has to keep trace of the motion flow of the previous frame.
This approach can be seen as a very basic motion predictor,
as it assumes as most probable motion offset that found in
the previous frame.

Although other optimal techniques deploying lower
bounding functions obtained by summations over parti-
tioned blocks have been proposed [5], [3], [1], only our
technique exploits the concept of partial distance in order
to further refine the bounding functions.

4. Experimental results

In this section some experimental results are presented
which compare the block matching technique described in
Sec. 3 with the BF. The distance used is the SAD (i.e.
p = 1), the block size is 16 x 16 (i.e. N = 16) and the
search is performed on both directions on an offset equal
to [—16,+16], hence M = 32. For what means the pro-
posed technique, we show the results obtained by choos-
ing r = {4,8}, which, as said before, turns out to be the
best choice in most cases. The testing sequences used for
the comparison are typical video sequences used for bench-
marking motion estimation algorithms and are shown in
Figures 1 + 10'. All algorithms have been implemented
in C on a Linux workstation with a 1.5 GHz Pentium M
CPU.

Tables 1 and 2 show the speed-ups in terms of ratios of
measured execution time of the proposed algorithm versus
the BF, the former referring to » = 4, the latter to r = 8.
In both tables, the second column (D,, o) refers to the ini-
tialization of D,,, as the distance corresponding to candidate

'Notation #i(k) means i — th frame out of a sequence of k frames

block at offset (0, 0), while the third column (D, ;) refers
to the initialization of D,,, by means of the motion predic-
tor as explained in Section 3. As it can be inferred from
the tables, the proposed technique can speed-up notably the
BF along the whole dataset. In the D,,, = Dy, 0,7 = 4
case the speed-ups range from 2.1 to 12.9, in the D,, =
Dy ymp, T = 4 case they range from 2.0 to 13.4. Similarly,
in the D, = Dy, 0,7 = 8 case the speed-ups range from
2.0 to 12.3, in the Dy, = Dy, mp, ™ = 8 case they range
from 2.0 to 12.5. For what means the method for initial-
izing D,,, the motion predictor approach seems to bring
more benefits, as it yields to almost the same results as the
other approach in all cases except for the Flower garden se-
quence, where the speed-up obtained is more than doubled.

Table 3 and 4 show the speed-ups in terms of ratios of
number of elementary operations of the proposed algorithm
versus the BF and, as previously, the former refers to r = 4,
the latter to » = 8. The elementary operations considered
refer to the high-level code, and are subdivided into three
groups: "If” for branch instructions, ”+/-” for additions
and subtractions, "Abs” for absolute values. Similarly to
Table 1, columns 2, 3,4 (D, o) refers to the initialization
of D,, as the distance corresponding to candidate block at
offset (0,0), while columns 5,6,7 (Dy, myp) refers to the
initialization of D,,, by means of the motion predictor. As it
can be seen, the proposed technique allows for a significant
reduction in terms of operations for what regards additions,
subtractions and absolute values. Obviously, the number of
branch operations is always increased compared to the BF,
due to the high number of tests performed when applying
the sufficient conditions for discarding candidate blocks.
Nevertheless, it is worth noting that for all the tested video
sequences, the percentage of branch instructions never ac-
counts for more than 0.13% of the total number of opera-
tions performed by the BFE.

Table 1. Speed-ups of the proposed algorithm
vs. BF,r =4

Sequence Do | Dmmp
Claire 12.9 13.0
Miss America 2.1 2.0
Salesman 12.6 13.4

Flower garden 2.9 7.3
Table tennis 2.4 3.0
Grandmother 5.3 4.9
Mr. Chest 12.4 11.9

Trevor 5.9 5.8
Surfside 3.9 3.9
Football 5.2 5.3

| Average || 6.6 | 7.1 |
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Table 2. Speed-ups (ratios of operations) of
the proposed algorithm vs. BF, r = 8

Table 4. Speed-ups in terms of reduction of N.
elementar Ops, proposed algorithm vs. BF,

r=238
Sequence Do | Dinmp
Claire 12.3 12.4 Dm,O Dm,mp
Miss America 2.0 2.0 Sequence If | +/— | Abs | If | +/— | Abs
Salesman 115 125 Claire 0.8 | 253 | 30.1 || 0.7 25.2 29.9

Flower garden 3.9 74 Miss America || 0.3 | 2.8 30 || 03 2.9 3.1
Table tennis 24 32 Salesman 0.8 28.8 | 36.0 || 0.8 | 321 | 412
Grandmother 4.8 4.6 Flower garden || 0.4 | 4.3 4.6 || 0.6 15.2 18.1

Mr. Chest 11.9 117 Table tennis 03] 3.6 39 | 04 5.6 6.2
Trevor 55 5.6 Grandmother (| 0.5 | 7.2 79 1 0.5 7.1 7.7
Surfside 3.6 37 Mr. Chest 0.8 299 | 392 |07| 299 | 392
Football 5.0 5.1 Trevor 06| 97 | 109 || 05 10.0 11.3

[ Average || 63 | 68 | Surfside 04| 5.1 56 || 04 52 5.6

Football 05] 95 10.8 || 0.5 9.6 10.9

Table 3. Speed-ups (ratios of operations) of References
the proposed algorithm vs. BF, » = 4

[1] M. Brunig and W. Niehsen. Fast full-search block match-

Do Do ymp ing. IEEE Transactions on Circuits and Systems for Video
Sequence If | +/— | Abs | If +/— | Abs Technology, 11(2):241-247, 2001.
Claire 081 215 2390108 214 23.8 | [2] F Crow. Summed-area tables for texture mapping. Com-

78 3 é)(utg Gmé)h]i)cs, 18(3):20(17—C21§, 198:. ilevel .
. Gao, C. Duanmu, and C. Zou. A multilevel successive
Salesman 08| 23.2 | 264 || 0.8 27.0 312 elimination algorithm for block matching motion estima-
Flower garden || 0.5 3.7 3.9 0.6 11.6 12.7 tion. IEEE Trans. Image Processing, 9(3):501-504, 2000.
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5 Conclusions

block motion estimations. In IEEE Conference on Ad-
didates, hence decreasing the computational burden of the
block matching process. The computation of the bounding
functions can be rapidly executed by means of standard in-
cremental techniques. Experimental results show the better
efficiency of the proposed technique with regards of the BA,
in terms of reduction of number of operations as well as in
terms of reduction of execution times. Future works will be
aimed at comparing our technique with other state of the art
fast optimal block matching algorithms.
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Figure 1. Claire sequence: #50(60) Figure 6. Grandmother sequence: $50(60)

Figure 2. Miss America sequence: £50(149) Figure 7. Mr. Chest sequence: £50(77)

Figure 4. Flower garden sequence: £50(60) Figure 9. Surfside sequence: £10(19)

Figure 5. Tuble tennis sequence: #50(60) Figure 10. Foorball sequence: £50(59)
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