
BOLD features to detect texture-less objects

Federico Tombari
DISI, University of Bologna
federico.tombari@unibo.it

Alessandro Franchi
Datalogic Automation

alessandro.franchi@datalogic.com

Luigi Di Stefano
DISI, University of Bologna

luigi.distefano@unibo.it

Abstract

Object detection in images withstanding significant clut-
ter and occlusion is still a challenging task whenever the
object surface is characterized by poor informative content.
We propose to tackle this problem by a compact and dis-
tinctive representation of groups of neighboring line seg-
ments aggregated over limited spatial supports and invari-
ant to rotation, translation and scale changes. Peculiarly,
our proposal allows for leveraging on the inherent strengths
of descriptor-based approaches, i.e. robustness to occlu-
sion and clutter and scalability with respect to the size of
the model library, also when dealing with scarcely textured
objects.

1. Introduction
Object detection is among the most widely studied topics

in computer vision. Currently, the established paradigm to
accomplish detection of textured objects relies on matching
descriptors, i.e. compact representations of local features
such as blobs, corners as well as other types of salient re-
gions extracted from images. The most popular, and ar-
guably most effective, approach within this paradigm is
SIFT [17], although also a number of more recent propos-
als, such as e.g. SURF [2] and ORB [23], provide good
performance.

One fundamental requirement for the above techniques
to behave effectively is the presence of enough information
onto the object surface to anchor feature detection and de-
scription. As illustrated in Fig. 1, whenever such infor-
mation is lacking due to the application requiring detection
of texture-less objects, state-of-the-art local invariant fea-
tures exhibit a dramatic performance degradation. How-
ever, texture-less objects are ubiquitous, and occur in par-
ticular in many vision tasks related to advanced manufac-
turing, such as e.g. visual inspection for process or qual-
ity control and robot guidance. Another emerging scenario
wherein the objects of interest are not guaranteed to fea-
ture rich textures deals with visual perception for service
robotics, where personal robots having to interact with typ-
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Figure 1: Textured vs. texture-less object detection. SIFT
behaves nicely on textured objects but performance drops
dramatically when the objects sought for lack enough tex-
ture details onto their surface. Our proposal (referred to as
BOLD) can advance the state-of-the-art in texture-less ob-
ject detection (compare BOLD to LINE-2D [11]).

ical household materials are being envisioned and proto-
typed. Hence, texture-less object detection is relevant to
foster deployment of computer vision in both established as
well as emerging scenarios.

Given the aforementioned limitations of descriptor-
based object detectors, state-of-the-art proposals tackle the
texture-less object detection problem by means of edge-
based template matching [11,12,24,25]. One major merit of
edge-based template matching is the ability to detect seam-
lessly both textured as well as texture-less objects. It suffers
from other limitations though, in particular related to the
ability to withstand significant occlusion and clutter as well
as to the scalability with respect to the size of the model
library. As for the former, it is inherent to the approach
that to tolerate a high degree of occlusion just a small frac-
tion of matching edges has to be accepted to trigger a de-
tection, which however in cluttered scenes often does not
result in a cue enough peculiar to avoid a large number of
false detections. Concerning the latter, although efficient
search schemes as well as careful hardware-related opti-
mization have been devised to help speeding-up the pro-
cess [11, 12, 24], it is, alike, somehow inherent to the ap-
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proach that a set of views (as large as mandated by the
required degree of pose invariance) of each sought object
needs to be matched to the current image. Hence, search
time grows linearly with the size of the model library. This
means that, especially when a relatively large pose space
has to be explored, often just a few models can be handled
in practice through edge-based template matching.

The above weak points are dealt with effectively by
descriptor-based object detectors. Indeed, a large model li-
brary is searched efficiently by storing all descriptors be-
longing to sought objects within a fast indexing structure
(e.g. a k-d tree or randomized forest [18]) which en-
ables fast lookup in logarithmic rather than linear time.
Descriptor-based methods are also very robust to occlusions
because, due to their high distinctiveness, just a few match-
ing features can provide enough evidence to judge reliably
upon the presence of an object even in heavily cluttered
scenes.

Based on the above considerations, we have investigated
on whether and how the inherent benefits of descriptor-
based methods may be leveraged to detect also texture-
less objects. Accordingly, in this paper we propose novel
features that can be injected seamlessly into a standard
SIFT-like object detection pipeline so as to provide notable
performance improvements with respect to state-of-the-art
edge-based template matching (see again Fig. 1). Pur-
posely, we exploit groups of neighboring line segments to
build up a representation of object parts which we term
Bunch Of Lines Descriptor (BOLD). The cues deployed in
our descriptor are peculiarly encoded into a compact two-
dimensional histogram and include relative orientations and
displacements between pairs of segments as well as contrast
polarity.

2. Related work
The state-of-the-art in edge-based template matching for

texture-less object detection is likely represented by LINE
[11], which has been proposed both for 2D (LINE-2D) as
well as RGB-D images (LINE-MOD). The former relies on
image gradients only, the latter deploys surface normals too.
Key to the method is a robust encoding of gradient infor-
mation together with a careful hardware-aware optimization
which delivers fast matching time. Thus, 3D object detec-
tion can be achieved by matching in real-time thousands of
templates gathered during the training stage by looking at
the object from different vantage points and distances. As
demonstrated in [9], though, the method can be harmed by
partial occlusions. Another recent relevant template match-
ing approach for texture-less object detection is proposed
in [25], which however, unlike BOLD, requires full-3D ob-
ject models to carry out the training stage.

As for previous works related to description and match-
ing of edges and contour information, we report here a brief

overview of those more closely related to our proposal. One
of the first methods to describe object contours is the ”cu-
bist” approach by Nelson and Selinger [19], whereby the
object representation is simplified by means of a loosely
structured combination of local context regions keyed by
distinctive boundary fragments called Key Curves. Unlike
BOLD, these fragments are described by simple features
such as compactness and curvature in order to efficiently in-
dex the model database. Then, Belongie et al. [4] proposed
Shape Context, a log-polar histogram of the relative coor-
dinates of uniformly sampled Canny edges. Being a global
descriptor, this method is not designed to withstand occlu-
sion and clutter. Similarly to Shape Context, Carmicheal
and Hebert [5] propose to describe edge densities computed
on a 2D image grid, these descriptors being then used to
train a cascade of classifiers.

Ferrari et al. [10] introduced a new family of scale-
invariant local shape features aimed at object categorization
which are based on chains of k-connected, roughly straight
contour segments called k-Adjacent Segment (kAS). Each
kAS is described as a signature including distances between
segment pairs, segment absolute orientations and lengths.
Kim et al. [15] proposed to learn feature correspondences
by training a classifier on descriptors that include a high
number of geometric and color traits between pairs of edge
lines such as length, absolute orientation and intensity/color
values along the line. Damen et al. [6] match sequences of
short line segments called constellation of edgelets, i.e. a
sequence of angles that defines the direction of the tracing
vectors that connect a subset of object edges. Constellation
descriptors encode the relative orientations and distances
between consecutive edgelets. As it will be illustrated in
next Section, [6, 10, 15] deploy different geometric features
with respect to those encoded by BOLD.

David and DeMenthon [7] generate a pose hypothesis for
each model-scene pair of extracted line segments. These
poses are then ranked by the average distance between the
10-Nearest Neighbor segments on the model transformed
according to the current pose hypothesis and the respec-
tive scene segments. This method does not include any
feature descriptor proposal as it relies on geometric veri-
fication only. Finally, related approaches that address the
feature detection stage only are [1, 14], which then rely on,
respectively, Shape Context-like [14] and SIFT-like [1] de-
scriptors.

3. BOLD features
As discussed in previous Section, several approaches

aimed at texture-less object detection or recognition rely on
edges and segments, mainly extracted from objects’ con-
tours, as the basic trait underpinning the semantic percep-
tion process. Edges and segments are also the starting point
of our method. In particular, we propose a descriptor for
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Figure 2: The geometrical primitives deployed by BOLD
are the relative orientations (represented by angles α and β
in figure) between pairs of oriented line segments.

line segments, which can be extracted by means of a vari-
ety of approaches such as either polygonal approximation
of the output of an edge detector [8, 22] or a specific line
detection algorithm [16, 21, 26]. Additionally, further prun-
ing may be enforced to improve repeatability of extracted
line segments, e.g. to discard short segments possibly due
to noise. Assuming a set of repeatable line segments, S,
has been extracted from the image, for each segment we
compute a BOLD descriptor, which aggregates together ge-
ometrical cues related to neighboring segments.

3.1. Geometric primitives

The BOLD descriptor aggregates together geometric
primitives computed over pairs of neighboring segments.
These primitives should yield invariance to rotation, trans-
lation and scale, and at the same time be robust to noise
and efficient to compute. As also depicted in Figure 2, let
us denote vectors in boldface and consider a segment pair
si, sj ∈ S, with mi, mj representing their respective mid-
points. Likewise, we denote as ei1,ei2 the two endpoints
of si, and as ej1,ej2 those of sj. We then refer to the seg-
ment connecting mi and mj as to t, the midpoint segment.
In particular, we define two different midpoint segments ac-
cording to the two possible signs:

tij = mj −mi (1)
tji = mi −mj (2)

We carefully investigated and tested a number of pair-
wise geometric primitives, including those proposed in pre-
vious literature, such as relative segment length, distance
between segments, absolute and relative segment orienta-
tions [6, 10, 15]. Based on this analysis, we sifted out the
primitive that provides the best trade-off between descrip-
tiveness and robustness, as outlined in the following.

First of all, to define our primitive each line segment has
to be associated with a canonical orientation. Given the di-
rection of the segment, we propose to leverage on the inten-
sity gradient at the midpoint, g(mi), to determine the sign.

Specifically, we define a canonically oriented line segment
si as follows:

sign (si) =
(ei2 − ei1)× g (mi)

‖ (ei2 − ei1)× g (mi) ‖
• n (3)

si = sign (si) · (ei2 − ei1) (4)

where × is the cross product, • the dot product and n the
unit vector normal to the image plane pointing towards the
observer. Hence, (3) yields±1 depending on the cross prod-
uct between ei2 − ei1 and the gradient at the midpoint hav-
ing or not the same sign as the normal pointing outward
from the image plane, which then determines whether the
endpoints must be actually swapped or not to get si. It is
worth noting here that, as segments extracted from the im-
age typically lay close to intensity contours, the gradient
magnitude at the midpoint is usually as high as to guarantee
a repeatable and robust contrast polarity, which indeed ren-
ders the canonical orientation assigned to segments through
(3) and (4) likewise stable and robust.

Based on the previous definition, the proposed geomet-
ric primitive consists in the two angles shown in Figure 2,
which can be uniquely associated to a pair of oriented seg-
ments: α measures the clockwise rotation which aligns si
to tij, β the clockwise rotation to align sj to tji. To obtain
such angles, we start from the computation of the smaller
angle between two vectors:

α∗ = arccos

(
si • tij

‖ si ‖ · ‖ tij ‖

)
(5)

β∗ = arccos

(
sj • tji

‖ sj ‖ · ‖ tji ‖

)
(6)

which yields measurements within the range [0, π]. Then,
we apply a further disambiguation step to pick either the
smaller or larger angle between the vector pair

α =

{
α∗,

si×tij
‖si×tij‖ • n = 1

2π − α∗ otherwise
(7)

β =

{
β∗,

sj×tji
‖sj×tji‖ • n = 1

2π − β∗ otherwise
(8)

and hence provides measurements within the entire [0, 2π]
angular range.

The disambiguation step given by equations (7),(8) al-
lows for distinguishing among local configuration that oth-
erwise would have been considered as equivalent, e.g. as
in the example in Fig. 4 which illustrates how the disam-
biguated angles can detect unlikely transformations such
as simultaneous mirroring and contrast polarity inversion.
Usually, higher distinctiveness comes to a price in terms of
robustness: we will show later in this Section that the cho-
sen angles (α, β) are consistently more effective than (α∗,

4323



0 

0,1 

0,2 

0,3 

0,4 

0,5 

0,6 

0,7 

0,8 

0,9 

1 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

TP
R 

FPR 

relative length 

normalized distance 

relative angle 

(rel. length, norm. distance) 

(rel. angle, norm. distance) 

(rel. angle, rel. length) 

(α, β) 

(α*, β*) 

(α, β) unoriented 

0 

500 

1.000 

1.500 

Pr
oc

es
si

ng
 t

im
e 

(m
s)

 

Figure 3: Comparison of pairwise geometric primitives.
Recognition times include evaluation over 80 models.

β∗). It is also important to point out that (α, β) depend
not only on the relative orientation between the two seg-
ments but also on their relative spatial displacement. Over-
all, they thus represent a compact geometric primitive en-
coding relative orientation and position as well as, due to
segments being oriented, contrast polarity. To the best of
our knowledge, the proposed geometric primitive has not
been deployed by any previous work. The most similar ap-
proach can be found in [15], which, among other features,
defines a relative segment orientation based on the midpoint
segment but without relying on establishment of a canoni-
cal orientation for each segment, which we found hindering
notably the repeatability of angle measurements.

As already mentioned, we carried out an in-depth exper-
imental analysis to help devise the most effective geomet-
rical primitives to be deployed within BOLD. An excerpt
from the results is shown in Figure 3, where we compare
(α, β) with other commonly deployed primitives [6, 10, 15]
such as relative orientation between segments, normalized
length and normalized midpoint distance. In this experi-
ment, all primitives are accumulated into histograms, which
is the way pairwise geometrical primitives are aggregated in
BOLD (see Section 3.2). As (α, β) yield 2D histograms
while the other considered primitives 1D histograms, we
also compare our proposal with 2D histograms built by us-
ing jointly multiple primitives. As anticipated, we also eval-
uated using the smaller angles between vectors (α∗, β∗),
as well as measurement of such angles without canoni-
cally orienting segments, which results in taking always the
smallest possible angle between vectors (referred to here
as (α, β) unoriented). By building histograms out of dif-
ferent primitives we attain different descriptors that can be
plugged seamlessly into the object detection pipeline de-
scribed in Section 4 and thereby evaluated comparatively as
depicted in Figure 3. Results show the overall superiority of
angle-based primitives with respect to distances or lengths.
We ascribe this mainly to the former turning out more robust
with respect to the potential fragility of the segment extrac-

sj 
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a=a* 
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b 
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b* 
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a) b) 

Figure 4: The disambiguated angles defined according to
(7),(8) highlight potentially invalid transformations such as
simultaneous mirroring and contrast polarity inversion: in
(b) α∗, β∗ take the same values as in (a), whilst α and β
take different values.

tion stage. The Figure also demonstrates the effectiveness
of relying on canonically oriented segments (α∗, β∗ vs. α,
β unoriented) as well as the neat performance improvement
brought in by the proposed angle disambiguation step (α, β
vs. α∗, β∗). As for computational efficiency, all the consid-
ered primitives appear approximately equivalent in terms of
their impact on overall detection time.

3.2. Aggregation of geometric primitives

For each line segment, si, the BOLD descriptor is built
by aggregating (α, β) primitives computed for the set of
neighboring segments (referred to as bunch) given by the
k nearest neighbors (kNN) segments of si, k being a pa-
rameter of the method. The kNN approach represents an
effective way to define an adaptive support for the descrip-
tor, thus rendering the approach inherently scale invariant.
Moreover, the kNN search over the 2D domain can be car-
ried out efficiently by means of indexing techniques [3].
Purposely, a distance between line segments has to be de-
fined. In our proposal we simply compute the distance be-
tween midpoints, although other approaches, such as sam-
pling uniformly along segments and computing the closest
distance between sampled points [7], may be deployed.

Successively, for each pair formed by si and one of the
k segments in its bunch, the geometric primitives (α, β) are
computed and aggregated together. We have investigated
on two main aggregation approaches. According to the for-
mer, a signature of the primitives is computed by ordering
the neighboring segments of a bunch based on the distance
to the central segment, then building the descriptor as the
ordered chain of primitives associated to each segment. As
for the latter, the angles are accumulated into a 2D joint
histogram, with the domain of both dimensions (i.e. the an-
gular range [0, 2π]) discretized according to a given quanti-
zation step θ (a parameter of the descriptor). The histogram
approach turned out to notably outperform the signature ap-
proach, due to the higher robustness with regards to clut-
ter and occlusion, as in a signature a single segment miss-
ing from the bunch tends to disrupt description. Moreover,
thanks to quantization, the histogram-based descriptor in-
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(a) k=5 (b) k=10 (c) k=20

Figure 5: Bunches computed for different values of k: a
higher value leads to more descriptiveness, but tends to in-
clude clutter.

herently provides good robustness to inaccuracies in seg-
ment localization. In our experiment we set the number of
bins for each histogram dimension b = 2π

θ = 12. On the
other hand, like in most histogram-based descriptors, quan-
tization effects may decrease distinctiveness of BOLDs. To
counterattack this, we apply bilinear interpolation by as-
signing to each entry of the histogram - and to its closest
bins - a weight that depends on the distance of the measure-
ment from the center of the bin. Finally, BOLD descrip-
tors are normalized by their L2 norm, so as to get vectors
laying onto the unit sphere. This is beneficial when using
matching measures derived from the L2 norm to obtain up-
per bounded values of the distance between descriptors.

3.3. Deploying multiple bunches

The number of neighboring segments, k, is a key param-
eter of the BOLD descriptor. A high number of segments
tends to increase distinctiveness of BOLDs, since there are
lower ambiguities due to similar bunches arising from non
corresponding object parts. On the other hand, a high value
of k tends to include, within the same bunch, neighboring
segments that may belong to clutter, this leading to some-
what corrupted histograms (see the example in Figure 5).
Accumulating primitives over histograms helps increasing
the robustness up to a certain extent, i.e. until the number
of clutter elements does not exceed that of object elements.
Moreover, a good choice for k depends also on the type of
objects to be detected: simple shapes made out of a few
segments call for a small k, so as not to incorporate clut-
ter, whereas for more complex objects a higher k is usually
beneficial. As such, the choice of k is critical.

Instead of trying to tune this parameter based on specific
scenarios, we propose to simultaneously deploy multiple k
values to describe each line segment si. This allows for
seamlessly and effectively encoding of both simple shapes
and local parts as well as larger scale structures. Indeed, we
have found out that this approach not only avoids the user
to have to choose a critical parameter, but also improves
performance significantly. Figure 6 reports object detec-
tion results attained by a single bunch approach with dif-
ferent k as well as by deploying multiple bunches: the best
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Figure 6: BOLD descriptors employing single vs. multiple
bunches with different k values.

single-bunch configuration turns out k = 10, but remark-
ably improved performance can be attained by using multi-
ple bunches altogether, this without slowing down too no-
tably the overall process. Hence, in the experimental evalu-
ation we will use the multi-bunch approach with k set to 5,
10, 15, 20.

4. Object detection pipeline

In this section we describe our object detection approach,
which deploys BOLD within a standard SIFT-like pipeline
[17] where the detection and description stages are mod-
ified to deal with texture-less objects. Object contours can
change notably at different scales, and sometimes edges can
completely disappear if either the object is blurred or a sig-
nificant scale variation does occur. For this reason, the first
step of our pipeline is represented by multi-scale extraction
of line segments. In particular, we build a scale space by
rescaling the input image at different resolutions, then ex-
tract line segments at each level of the pyramid. The scale
of each segment is retained so that, in the next step, the
BOLD descriptor for each segment is computed taking into
account only the neighbors found at the same scale. This
counteracts the issue of missing segments due to large scale
variations.

Successively, we rely on the Euclidean distance and the
FLANN Randomized Kd-tree Forest [18] to match BOLD
descriptors extracted from the input image to those gath-
ered at training time from the objects belonging to the
model library. Although we have evaluated matching mea-
sures specifically conceived for histogram data, such as the
Histogram Intersection, we have found that the Euclidean
distance yields good results without sacrificing efficiency.
Similarly to [17], feature correspondences are then vali-
dated through a Generalized Hough Transform and the final
pose is computed through a Least-Square Estimation of the
required transformation (e.g. a similarity or homography).
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(a) D-Textureless: 3 models (left) and 1 scene
(right)

(b) Caltech Covers: 3 models (left) and 1
scene (right)

(c) CMU-KO8: 2 models (top) and 2 scenes

Figure 7: Examples of models and scenes from the datasets used in the experimental evaluation.

5. Experimental evaluation
We compare here the BOLD pipeline for texture-less

object detection to two prominent edge-based template
matching-based approaches, i.e. LINE-2D [11] and the
shape-based matching tool available in the HALCON li-
brary by MVTec1. Moreover, we include in our comparison
descriptor-based methods for textured object detection such
as SIFT [17], SURF [2] and ORB [23]. To extract the line
segments needed to compute BOLD we use the LSD algo-
rithm [26]. Although BOLD is in principle independent of a
specific line segment detector, we found that LSD provides
enough repeatability to enable effective object detection. In
particular, we found that performance using LSD turns out
significantly superior to polygonal approximation of Canny
edges.

The implementations of LINE-2D, SURF and ORB are
taken from OpenCV 2, while for SIFT we rely on Rob
Hess’s implementation3. As for SIFT and SURF we sim-
ply plug their specific detection/description stages into the
reference object detection pipeline described in Section 4,
while for the ORB pipeline we employed LSH in the match-
ing stage as suggested in [23]. As for HALCON, we have
used the find scaled shape model function included
in the free demo version of the library. All methods were
run with their default parameters, except for HALCON for
which we carried out a specific parameter tuning on a simi-
lar -but distinct- dataset with respect to that used for testing.
Experiments have been executed on an Intel Core2 Quad
2.5 Ghz CPU with 4 GBs of RAM. All algorithms have
been compiled on a 64-bit environment. We wish to point
out that, unlike HALCON, SURF and LINE-2D, the BOLD
implementation used in the experiments is not optimized to
take advantage of multi-core architectures or SIMD instruc-
tions (e.g. SSE2), though our method may in principle be
parallelized easily.

Given the scarceness of public datasets for texture-less

1www.mvtec.com/halcon
2www.opencv.org
3robwhess.github.com/opensift

object detection withstanding clutter and occlusions, we
have acquired our own, referred to as D-Textureless. This
dataset has been acquired with a webcam, comes with hand-
labeled ground-truth and includes 9 texture-less models and
55 scenes with clutter and occlusions. A fairly large pose
space has to be explored by the algorithms due to models
appearing rotated, translated and scaled in the scenes. All
9 models are searched in each scene, which in turn may in-
clude one or more models, but one instance of each at most.
To complement our comparison, we evaluate BOLD also on
a textured dataset built from publicly available images and
referred to as Caltech Covers. Specifically, this dataset in-
cludes 80 models randomly chosen from the Caltech Game
Covers dataset 4 and 50 scenes, which we built synthetically
by randomly rotating, translating and scaling a pre-defined
number of models (from 1 to 3), together with additional
covers not included in the model database so as to create
clutter as well as occlusions up to 90%. Again, in each
scene we look for all 80 models. D-Textureless and Caltech
Covers are referred to, respectively, as texture-less and tex-
tured dataset in Fig. 1, while Caltech Covers has been used
also in the experiments reported in Figures 3, 6. Examples
of models and scenes from the two datasets are shown in
Fig. 7a and Fig. 7b.

Fig. 8 reports the ROC curves yielded by the considered
algorithms on the two datasets. Focusing on the texture-less
objects (Fig. 8a), it can be seen that BOLD neatly outper-
forms all methods. Moreover, and as expected, template-
matching methods such as HALCON and LINE-2D per-
form much better than existing descriptor-based methods
like SIFT, SURF and ORB. Despite the absence of ei-
ther machine level optimizations or multi-threading, BOLD
turns out faster than HALCON, due to the relatively large
number of sought objects, although slower than LINE-2D.
In the experiments with Caltech Covers, we did not include
LINE-2D and HALCON. Indeed, the former requires the
algorithm to be trained carefully from nearly all the possi-
ble vantage points that may occur in the actual scene, which

4vision.caltech.edu/malaa/datasets/caltech-games
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Figure 8: Comparison on texture-less dataset D-Textureless (left) and textured dataset Caltech Covers (right).

is not feasible when the model database contains as many
as 80 objects; the latter can be trained by a single image
per model, but turns out excessively slow with such a large
model database (see also Figure 10). As shown in Fig. 8b,
SIFT is clearly the best performer when dealing with tex-
tured objects, neatly surpassing SURF and then BOLD. As
for efficiency, in case of a relatively large model database,
BOLD is faster than SIFT and SURF and slower only than
ORB, which nevertheless seems not as effective with the
Caltech Covers dataset.

We also address detection of texture-less 3D objects un-
der arbitrary viewpoint on the challenging CMU Kitchen
Occlusion dataset (CMU-KO8), recently introduced by
Hsiao and Hebert [13] to assess their occlusion reasoning
model based on the computation of the statistics of object
dimensions in a given environment. The authors incorpo-
rate their model into LINE-2D according to three different
variants and show improved performance on their dataset,
which consists of 8 common household texture-less ob-
jects sought in 800 single view and 800 multi view cluttered
scenes with various levels of occlusion (see Fig. 7c). In sin-
gle view experiments the object is seen in the scene from the
same vantage point as in the -single- training image, while
multi view experiments focus on variations of the elevation
angle, the training set comprising 25 views of each object.
According to [13], in Figure 9 we provide the results at-
tained by the BOLD object detection pipeline in terms of
recall (i.e. detection rate) versus false positives per image
(fppi) curves averaged across each of the two experiments.
As for general methods conceived to operate without any
prior knowledge on the working environment, from Figure
9 we can observe that BOLD neatly outperform LINE-2D
in both experiments. Then, Figure 9 confirms the benefits
brought in by deployment of environment-specific statistics
on object sizes, as the variants of LINE-2D proposed in [13]
overall compare favorably with respect to a state-of-the-art
general purpose approach such as BOLD. Interestingly, in
the conservative (i.e. low fppi) portion of the curve of the
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Figure 10: Scalability with respect to the number of models.

single view experiment BOLD delivers a higher detection
rate than the methods proposed in [13]. Figure 9 shows
also two failure cases and one successful detection enabled
by quite impressive matches dealing with segments on the
mug handle occluded by a semi-transparent plastic bag.

Finally, to analyze the scalability of the considered algo-
rithms, in Figure 10 we report the measured execution times
versus the number of sought models for the D-Textureless
dataset5. As expected, template matching methods scale lin-
early with the number of models, with HALCON showing
a much steeper increase of computation time than LINE-
2D. On the other hand, BOLD provides a nearly constant
detection time up to as many as 100 models.

Additional qualitative results related to CMU-KO8 as
well as the D-Textureless dataset can be found on BOLD’s
project page 6.

6. Concluding remarks
BOLD features allows for leveraging on a fairly standard

descriptor-based pipeline to detect effectively also texture-
less objects, thereby achieving state-of-the-art robustness to
clutter and occlusion and unprecedented scalability with re-
spect to the size of the model database. The main limitation

5As the dataset comprises only 9 different models, we simply replicated
them as needed to run this experiment.

6http://vision.deis.unibo.it/BOLD
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Figure 9: CMU-KO8: quantitative (BOLD, LINE-2D and the three methods proposed in [13]) and qualitative (BOLD) results

of our proposal deals with detection of highly curvilinear
(e.g. round) or simple (i.e. made out of a few lines) objects
in scenes with heavy occlusion and clutter. Such objects
show just a few repeatable BOLDs: if some get corrupted
due to occlusion or clutter, then the object may hardly be
detected. To enlarge the set of shapes effectively dealt with
by our proposal, we plan to include description of oriented
elliptical arcs [20].
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