
Speeding-up NCC-based template matching using
parallel multimedia instructions

Luigi Di Stefano, Stefano Mattoccia, Federico Tombari
Department of Electronics Computer Science and Systems (DEIS)

Viale Risorgimento 2, 40136 - Bologna, Italy
Advanced Research Center on Electronic Systems (ARCES)

Via Toffano 2/2, 40135 - Bologna, Italy
University of Bologna

Email: ldistefano@deis.unibo.it, smattoccia@deis.unibo.it, federicot@omniway.sm

Abstract— This paper describes the mapping of a recently
introduced template matching algorithm based on the Normal-
ized Cross Correlation (NCC) on a general purpose processor
endowed with SIMD (Single Instruction Multiple Data) multi-
media instructions. The algorithm relies on the Bounded Partial
Correlation (BPC) technique, which consists in deploying a
sufficient condition to detect unsatisfactory matching candidates
at a reduced computational cost. First, we briefly describe the
BPC technique and highlight the related expensive computations.
Then, based on the analysis of the major SIMD multime-
dia instruction set extensions available nowadays, we define a
processor-independent multimedia instruction set and show how
to carry out the most expensive BPC calculations using these
pseudo-instructions. Finally, we provide experimental results
obtained mapping the proposed algorithm on a mainstream
multimedia SIMD instruction set (i.e. MMX). We compare these
results with those obtained with the brute force NCC algorithm.
The results show that the BPC technique is suited for a parallel
SIMD-style mapping and that its effectiveness can be significantly
improved using the multimedia instructions available nowadays
in most general purpose CPUs.

I. SUMMARY

Template matching is a fundamental task occurring in count-
less image analysis applications. As far as template matching
is concerned, Normalized Cross Correlation (NCC) is often the
adopted similarity measure (e.g. [1], [2], [3], [4], [5], [6]) due
to its robustness with respect to photometric variations. Since
with large size images and/or templates the matching process
can be computationally very expensive, numerous techniques
aimed at speeding up the basic algorithm have been proposed
in literature [7], [8], [9]. However, these techniques imply a
non exhaustive search process since they do not compare the
full resolution image with the full resolution template at every
search position and therefore can be trapped by local extremes
resulting in wrong localization of the template. As for the
Normalized Cross Correlation, we have shown recently [10],
[11], [12] that it is possible to speed-up the exhaustive-search
template matching process by the Bounded Partial Correlation
(BPC) technique. In [12] BPC deploys a sufficient condition
based on the Cauchy-Schwarz inequality to detect quickly
unsatisfactory matching candidates.

Both BPC and the standard brute force NCC algorithm
execute repetitive operations based on the Multiply and Ac-

cumulate (MAC) computations involved in the calculation of
a dot-product term. If the pixels are relatively undersized
with respect to the multimedia registries, the dot-product
computation can be significantly accelerated with appropriate
MAC instructions that parallelize the computation by carrying
out several multiplications within a single instruction.

The paper is organized as follows: we first review the basic
BPC technique, then we describe the most relevant aspects
concerned with the mapping of the BPC algorithm on a
parallel architecture. Then we provide experimental results
comparing the performance of the scalar BPC technique with
the performance of the same SIMD mapped algorithm. These
results show that SIMD instructions are suited for the BPC
algorithms allowing a significant further speed-up in NCC
based template matching.

II. REVIEW OF THE BPC TECHNIQUE

With Normalized Cross Correlation the template sub-image,
T , is located into the image under examination, I , in order
to determine the maximum of the NCC function (1). The
dot-product term yielding the numerator of (1) represents
the cross correlation between the template and the image,
C (x, y), its computation turning out to be the bottleneck in
the evaluation of η (x, y). In fact, the two terms appearing
in the denominator represent the �2 norms of the sub-image
under examination, ‖I(x, y)‖2, and of the template,‖T ‖2. The
latter can be computed once at start up, the former can be
obtained very efficiently using incremental calculation based
on accumulating only 4 product terms per image point [13],
[14], [15].

η (x, y) =

N∑
j=1

M∑
i=1

I (x + i, y + j) · T (i, j)

√√√√
N∑

j=1

M∑
i=1

I (x + i, y + j)2 ·
√√√√

N∑
j=1

M∑
i=1

T (i, j)2
(1)

Suppose now that a function β(x, y) exists such that β(x, y)
is an upper-bound for C(x, y):

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 13, 2010 at 06:51 from IEEE Xplore. Restrictions apply.

β(x, y) ≥ C(x, y) =
N∑

j=1

M∑
i=1

I (x + i, y + j) · T (i, j), (2)

by normalizing β we obtain an upper-bound for the NCC
function:

β(x, y)
‖I(x, y)‖2 · ‖T ‖2

≥ C (x, y)
‖I(x, y)‖2 · ‖T ‖2

= η(x, y) (3)

Then, indicating as ηmax the current correlation maximum, if
the following inequality is verified at point (x, y):

β(x, y)
‖I(x, y)‖2 · ‖T ‖2

< ηmax (4)

then the matching process can proceed with the next point
without carrying out the calculation of C(x, y), as that po-
sition is guaranteed not to correspond to the new correlation
maximum. Hence, (4) is a sufficient condition for skipping
the points that cannot improve the degree of matching with
respect to the current maximum without calculating the actual
cross correlation. Conversely, if (4) is not verified then it is
necessary to compute C(x, y), normalize it by the product
‖I(x, y)‖2 · ‖T ‖2 and check the new maximum condition:

C(x, y)
‖I(x, y)‖2 · ‖T ‖2

≥ ηmax (5)

This approach, referred to as BPC, allows for reducing
significantly the number of operations required to carry out
exhaustive template matching by deploying a suitable suffi-
cient condition (i.e. equation (4)) where function β is derived
from the Cauchy-Schwartz inequality [11].

III. THE SIMD MAPPING

The use of multimedia instructions allows for reducing
the execution time of the BPC algorithm as well as of the
brute force NCC algorithm. In particular, the most expensive
computation involved in the evaluation of the NCC function is
represented by the evaluation of the dot product term C(x, y).
As for BPC, when the sufficient condition (4) holds only a
portion of the dot product term is calculated, otherwise this
quantity must be integrated with the residual dot-product term
(see [12] for more details).

The mapping of the brute force NCC algorithm and of the
BPC algorithm with multimedia instructions [16] is obtained
considering the case of images with 8-bit pixels. Therefore,
the optimization of the algorithm by means of multimedia
instructions is achieved by implementing the internal sums
and multiplications (MAC) of the dot product term with ap-
propriate parallel SIMD-style instructions. More precisely, the
optimization is made row by row and a suitable procedure for
indexing the correct lines and padding the vectors is adopted.
In order to describe the proposed mapping we make use
of machine-independent pseudo-code, considering the typical
case of a general purpose processor with 64-bit data paral-
lelism for SIMD instructions ([17], [18], [19], [20], [22], [23],

[24]), though some recent machines provide a higher degree
of parallelism (i.e 128 bits for Intel Pentium 4 and Motorola
Power PC). The extension of the proposed implementation to
128-bit or higher data parallelism is straightforward.

Under these circumstances, we assume that the 64 bits
stored in a multimedia register (or in memory) can be seen
as eight bytes (B), four words (W), two double words (D) or
one quadword (Q). Multimedia registers will be referred to as
MR0, ..., MR5. The SIMD instructions working on multimedia
data will be characterized by the prefix M, with the type of
the data items processed in parallel specified through a suffix
following the name of the operation. Hence, in our pseudo-
language a generic SIMD parallel instruction will be expressed
as:

M_(OP)_(T) op#1; op#2

where OP ∈ {AND, OR, NOT, ADD, SUB, ...} encodes
the operation and T ∈ {Q, D, W, B} specifies the type of the
native data items packed into operands op�1 and op�2. Both
operands can be multimedia registers or memory locations,
and the first acts as source and destination.

We will assume that, thanks to appropriate passages of
variables, the routine disposes of 4 already initialized global
parameters:

• assindex : address of the 32-bit index that contains the
number of iterations to be done;

• tot : address of the 64-bit accumulator that contains the
sum of products computed so far;

• gi : pointer to the first element of the current row of the
sub-image

• gt : pointer to the first element of the current row of the
template

Load and store operations between memory and multimedia
registers, as well as data-transfers between multimedia regis-
ters, will be handled by the (M MOV op�1, op�2) instruction,
which transfers 64 bits from the source operand (op�2) to the
destination operand (op�1). Both can be a memory location
or a multimedia register. This is the only instruction of our
pseudo-language that does not require specification of the type
of the data items packed into the operands, as it works only
with quadwords.

Once loaded the index of the iterations on 32-bit register
R0 and the accumulator on a multimedia 64-bit register:

MOV R0, [assindex]
M_MOV MR2, [tot]

the iterative cycle can start:

_loop:

; the counter gets decremented
DEC R0

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 13, 2010 at 06:51 from IEEE Xplore. Restrictions apply.

; 8 elements of the sub_image
; are loaded on MR0
MOV R1,[gi]
M_MOV MR0,[R1+8*R0]

; 8 elements of the template
; are loaded on MR1
MOV R1,[gt]
M_MOV MR1, [R1+8*R0]

As the native data are byte items, representing pixels both
of the sub-image and of the template, MAC instructions
need to work with word items in order to preserve possible
overflows derived by multiplications between bytes. SIMD
extensions generally contain instructions used to pack and
unpack data within multimedia registers, mostly to allow casts
from different data types. Using these instructions the iterative
cycle can be divided in 2 parts, where first the 4 higher then
the 4 lower bytes are unpacked in 4 words, whose higher 8
bits are set to 0.

We define two groups of instructions: one to unpack the
lower 32 bits (L) of the register, the other to unpack the higher
(H) 32 bits. Hence, the generic unpacking instruction will be
expressed as (M UNPCK (P) (T) op�1) where P ∈ (H ; L)
is used to denote unpacking of the higher or lower 32 bits,
T ∈ (D; W ; B) specifies the original data type and op�1
the multimedia register to be unpacked. For example, the
following instruction unpacks the lower 4 bytes within MR0
into four words:

M_UNPCK_L_B MR0

with the most significant bytes of the resulting word data
items set to zero. The next section of code is relative to the
unpacking operations performed on the data loaded in the
previous part:

; the 8 image elements are
; stored on MR4 for later use
M_MOV MR4,MR0

; the higher 4 bytes are unpacked
M_UNPCK_H_B MR0

; the 8 template elements are
; stored on MR5 for later use
M_MOV MR5, MR1

; the higher 4 bytes are unpacked
M_UNPCK_H_B MR1

We define the MAC instruction applied on word items as
(M MAC W op�1, op�2), where W specifies that the original
data type is word, where op�1 and op�2 specify the 2 word
operands and op�1 the destination register. After executing the

4 multiplications between correspondent items, the instruction
stores into the destination register 2 doublewords that repre-
sent, respectively, the sums of the 2 higher and the 2 lower
multiplications (see Fig. 1).

Fig. 1. The parallel MAC instruction.

; MAC of the higher 4 elements
M_MAC_W MR0, MR1

; update of the accumulator
M_ADD_D MR2, MR0

Once the first 4 pixels of both the template and the image
have been multiplied and summed between each other, and
then added to the current accumulator value, it is possible to
adopt a similar procedure to compute the remaining 4 pixels
that have been previously stored into the registers named MR4
and MR5:

; the lower 4 elements of the
; sub-image and template are unpacked
M_UNPCK_L_B MR4
M_UNPCK_L_B MR5

; MAC of the lower 4 elements
M_MAC_W MR4, MR5

; update of the accumulator
M_ADD_D MR2, MR4

At the end of the iterative cycle, the counter value is tested
to verify if there are other pixels in the current row that is being
computed. In case no more pixels are left, the accumulator tot
can be updated with a memory access.

; testing if there are more
; elements on the row
CMP R0, 0

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 13, 2010 at 06:51 from IEEE Xplore. Restrictions apply.

JNE _loop

; final update of the accumulator
; with the current total
M_MOV [tot], MR2

The described cycle can be easily deployed by the BPC (or
standard NCC) algorithm to perform a row-by-row correlation
between the pixels belonging to the image and to the template.
As it can be seen, the cycle has been optimized in order to
require the minimum number of memory accesses for each
computed row (i.e. 2 load operations and 1 store operation).
As it can be easily pointed out, working with bigger registries
would mean processing more pixels in the same time, hence
increasing the speed up of the correlation. In case a greater
parallelism can be handled by the processor, the code can be
simply modified by increasing the number of pixels that are
being computed during each of the two stage of the algorithm.

IV. EXPERIMENTAL RESULTS

The experimental results have been obtained mapping the
brute force NCC and BPC algorithms into the MMX multime-
dia instruction set extension [18] and running the benchmarks
on a Linux workstation based on a AMD Thunderbird 900
MHz processor. Table I shows the speed-up with respect to
the C-coded brute force NCC algorithm yield respectively by
the SIMD-coded brute force NCC algorithm (NCCSIMD), the
C-coded BPC algorithm (BPCC) and the SIMD-coded BPC
algorithm (BPCSIMD). These measures have been obtained
on three images called as ”albert”, ”pcb3”, ”plants” that belong
to the data set used in [10] and are shown in Figures 2, 3 and
4.

Image NCCSIMD BPCC BPCSIMD

pcb3 2.78 2.21 5.66
plants 2.50 2.54 5.96
albert 2.51 3.28 7.40

TABLE I

MEASURED SPEED-UPS ON AMD THUNDERBIRD 900 MHZ CPU

As shown by the table, the proposed SIMD implementation
is effective in speeding-up NCC-based and BPC-based tem-
plate matching at least by a factor of 2. The use of both BPC
and multimedia SIMD instructions can dramatically accelerate
exhaustive NCC-based template matching process, with mea-
sured speed-ups ranging from 5.66 to 7.40. It is also worth
pointing out that the SIMD mapping results more effective
with the NCC standard algorithm: this is due to the fact that the
sufficient condition (4) embodied in the BPC algorithm allows
for skipping several MAC operations involved in the whole
dot product computation, with these operations representing
the bulk of the proposed SIMD optimization.

V. CONCLUSION

We have described the mapping of the BPC algorithm
on a general purpose processor by means of multimedia

Fig. 2. albert: W × H = 320 × 240, M × N = 51 × 58, ηmax =
NCC (198, 43) � 0.995, ηZmax = ZNCC (198, 43) � 0.9592

Fig. 3. pcb3: W × H = 384 × 288, M × N = 72 × 73, ηmax =
NCC (268, 65) � 0.997, ηZmax = ZNCC (268, 65) � 0.9724

instructions. The BPC technique represents a novel technique
capable of rapidly rejecting mismatching positions thanks to
the deployment of a sufficient condition based on the Cauchy-
Schwarz inequality. The related mapping has been described
by means of a processor-independent SIMD instruction set,
and it can also be used to optimize any algorithm that makes
use of the NCC function. Experimental results show that
the benefit of the original BPC technique can be effectively
improved using the described mapping.

ACKNOWLEDGMENT

We wish to thank Autonomous Systems Center (VASC) at
Carnegie Mellon University for the use of image ”plants” .

REFERENCES

[1] Changming Sun, ”Fast Optical Flow Using 3D Shortest Path Techniques”
Image and Vision Computing, Vol. 20 (13/14), 981-991, 2002, 981-991

[2] Changming Sun, ”Fast Stereo Matching Using Rectangular Subregioning
and 3D Maximum-Surface Techniques” Int. Journal of Computer Vision,
Vol. 47(1/2/3), 2002, 99-117

[3] Changming Sun, Shmuel Peleg, ”Fast panoramic stereo matching using
cylindrical maximum surfaces”, IEEE Trans. on Systems, Man and
Cybernetics Part B, Vol. 34(1), Feb. 2004, 760-765

[4] O. Faugeras, B. Hotz, H. Mathieu, T. Viille, Z. Zhang, P. Fua, E. Theron,
L. Moll, G. Berry, J. Vuillemin, P. Bertin, C. Proy, ”Real time correlation-
based stereo: Algorithm, implementations and applications”, INRIA, Tech.
Rep. RR-2013, 1993.

[5] Du-Ming Tsai, Chien-Ta Lin, ”Fast normalized cross correlation for defect
detection”, Pattern Recognition Letters, Vol. 24, 2003, 2625-2631

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 13, 2010 at 06:51 from IEEE Xplore. Restrictions apply.

Fig. 4. plants: W × H = 512 × 400, M × N = 104 × 121, ηmax =
NCC (333, 66) � 0.986, ηZmax = ZNCC (333, 66) � 0.9576

[6] Du-Ming Tsai, Chien-Ta Lin, Jeng-Fung Chen, ”The evaluation of
normalized cross correlations for defect detection”, Pattern Recognition
Letters, Vol. 24, 2003, 2525-2535

[7] A. Rosenfeld, G.J. Vanderburg, ”Coarse-Fine template matching”, IEEE
Trans. on Sys., Man and Cyb., Vol. 7, 1977, 104-197

[8] A. Rosenfeld, G.J. Vanderburg, ”Two-stage template matching”, IEEE
Trans. on Image Processing, Vol. 26, 1977, 384-393

[9] W. Krattenthaler, K.J. Mayer, M. Zeiler, ”Point correlation: a reduced-cost
template matching technique” 1st IEEE Int. Conf. on Image Processing
(ICIP 1994), Vol. I, September, 1994, Austin, Texas, USA, 208-212

[10] L. Di Stefano, S. Mattoccia, ”Fast Template Matching using Bounded
Partial Correlation”, Machine Vision and Applications, Vol. 13, 2003,
213-221

[11] L. Di Stefano, S. Mattoccia, M. Mola ”An Efficient Algorithm for
Exhaustive Template Matching based on Normalized Cross Correlation”,
IAPR Int. Conf. on Image Analysis and Processing (ICIP 2003), Septem-
ber 17-19, 2003, Mantova, Italy, pp 322-327

[12] L. Di Stefano, S. Mattoccia, ”A sufficient condition based on the
Cauchy-Schwarz inequality for efficient Template Matching”, IEEE
Int. Conf. on Image Processing (ICIP 2003), September 14-17, 2003,
Barcelona, Spain

[13] M. J. Mc Donnell, ”Box-Filtering Techniques”, Computer Graphics and
Image Processing, Vol. 17, 1981, 65-70

[14] P. Viola, M. Jones, ”Rapid Object Detection using Boosted Cascade
of Simple Features”, IEEE Int. Conf. on Computer Vision and Pattern
Recognition (CVPR 2001), Vol. I, 2001, 511-518

[15] O. Veksler, ”Fast Variable window for Stereo Correspondence using
Integral Images”, IEEE Int. Conf. on Computer Vision and Pattern
Recognition (CVPR 2003), Vol. I, 2003, 556-561

[16] Ruby B. Lee, ”Multimedia Extensions for General-Purpose Processors”,
IEEE Workshop on Signal Processing Systems Design and Implementa-
tion, 1997, Leicester, United Kingdom, 9–23

[17] Lee R. B., ”Subword Parallelism with MAX-2”, IEEE Micro, 16(4),
1996, 51–59

[18] Peleg A. and Weiser U., ”MMX Technology Extension to the Intel
Architecture”, IEEE Micro, 16(4), 1996, 42–50

[19] Tremblay M., O’Connor M., Narayanan V., He L., ”VIS Speeds New
Media Processing”, IEEE Micro, 16(4), 1996, 10–20

[20] Oberman S., Favor G., Weber F., ”AMD 3DNow ! Technology: Archi-
tecture and Implementations”, IEEE Micro, 19(2), 1999, 37–48

[21] Diefendorff K., Dubey P.K., Hochsprung R., Scale H., ”VIS Speeds New
Media Processing”, IEEE Micro, 20(2), 2000, 85–95

[22] Sharangpani H., Arora K., ”Itanium Processor Microarchitecture”, IEEE
Micro, 20(5), 2000, 24–43

[23] Shreekant T. and Huff T., ”Implementing streaming SIMD extensions
on the Pentium III processor”, IEEE Micro, 20(4), 2000, 47–57

[24] Advanced RISC Machines, www.arm.com

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 13, 2010 at 06:51 from IEEE Xplore. Restrictions apply.

