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Abstract

This paper proposes a novel algorithm aimed at
speeding-up template matching based on the Lp norm. The
algorithm is exhaustive, i.e. it yields the same results as a
Full Search (FS) template matching process, and is based
on the deployment of tight lower bounds that can be de-
rived by using together the triangular inequality and par-
tial evaluations of the Lp norm. In order to deploy this,
template and image subwindows are properly partitioned.
The experimental results prove that the proposed algorithm
allows speeding-up the FS process and also (when applied
to the L2 norm) the exhaustive approach based on the Fast
Fourier Transform.

1. Introduction

Locating a given template into an image is the task of
template matching, a basic image analysis technique de-
ployed in a large variety of machine vision applications.
The Full Search (FS) template matching process relies on
calculating at each position of the image a function measur-
ing the degree of similarity/dissimilarity between the tem-
plate and the portion of the image currently under exami-
nation, which will be referred to in the following as image
subwindow (see also [10]). Within this scope, widely used
dissimilarity functions are the Sum of Squared Distances
(SSD) and the Sum of Absolute Differences (SAD).

Since the Full Search (FS) approach is known to be com-
putationally very expensive, several algorithms have been
proposed in the literature in order to speed-up the match-
ing process. These can be divided into exhaustive and non-
exhaustive algorithms. The latter aim at speeding-up the

matching process by reducing the overall search space, thus
not guaranteeing the final result to be the same as with the
FS approach (i.e. SSDA [1], [8]). On the other hand, ex-
haustive algorithms are able to yield exactly the same re-
sult as the FS process. Within these algorithms, FFT-based
methods carry out part of the computations required by the
SSD function in the frequency domain, while [3] proposed a
signal domain method based on pruning rapidly unsatisfac-
tory matching positions for both SAD and SSD-based tem-
plate matching processes. Recently an original approach
based on projection kernels and the Walsh-Hadamard trans-
form has been proposed in [4].

Furthermore, template matching can be regarded as a
Nearest-Neighbour Search problem, which associates this
topic with other relevant research fields such as Block
Matching for motion estimation and Vector Quantization,
where several exhaustive and non-exhaustive techniques
have been proposed in the last two decades. For instance, in
the motion estimation field [6] and [9] proposed signal do-
main methods based on the triangular inequality, while [5]
and [2] improved these methods by proposing a multireso-
lution framework similar to the one used by [3] in its tech-
nique for template matching.

In this paper we propose a novel signal domain algorithm
that meets the exhaustivity requirement and is based on the
deployment of several sufficient conditions -characterized
by increasing efficiency- for pruning rapidly unsatisfactory
matching positions. The algorithm relies on partitioning the
template and the image subwindow so as to determine tight
lower bounds of the Lp norm by means of applications of
the triangular inequality together with partial evaluations of
the Lp norm itself.
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2. Proposed algorithm

Let the template, T , be of size M × N , and the image,
I(x, y), of size W × H , where (x, y) denotes the generic
image coordinates. We also indicate the image subwindow
located at (x, y) as Is(x, y). Then, the generic distance
function measuring the dissimilarity between the template
and the image subwindow can be written as follows:

δp(x, y) = ||Is(x, y) − T ||pp =

=
M∑

i=1

N∑

j=1

∣∣I(x + i, y + j) − T (i, j)
∣∣p (1)

with || · ||p denoting the Lp norm. If p = 1 then δp(x, y)
coincides with the SAD function, while by taking p = 2
with the SSD function.

Let’s now consider the triangular inequality:

||Is(x, y) − T ||p ≥ ∣∣||Is(x, y)||p − ||T ||p
∣∣ (2)

that allows the definition of a function, βp(x, y), which
turns out to be a lower-bound of δ(x, y) at any (x, y):

βp(x, y) =
∣∣||Is(x, y)||p − ||T ||p

∣∣p (3)

We propose to partition the template and the image subwin-
dow into r disjoint regions. In order to simplify the im-
plementation of the method, we use regions made out of
successive rows (see Fig. 1). Furthermore, to increase the
computational efficiency of the algorithm (see Section 3),
we use regions characterized by the same number of rows,
n, except for the last one. In the particular case that N is a
multiple of r, the regions will have all the same size. Based
on the described partitioning scheme, we define the generic
partial bound term computed between rows (ρ, θ) as:

βp(x, y)|θρ =
∣∣||Is(x, y)||p

∣∣θ
ρ
− ||T ||p

∣∣θ
ρ

∣∣p =

∣∣[
M∑

i=1

θ∑

j=ρ

∣∣I(x + i, y + j)
∣∣p] 1

p − [ M∑

i=1

θ∑

j=ρ

∣∣T (i, j)
∣∣p] 1

p
∣∣p (4)

and the generic partial distance term between rows (ρ, θ)
as:

δp(x, y)|θρ = ||Is(x, y) − T ||pp
∣∣θ
ρ

=

=
M∑

i=1

θ∑

j=ρ

∣∣I(x + i, y + j) − T (i, j)
∣∣p (5)

where, of course, the following inequality applies:

δp(x, y)|θρ ≥ βp(x, y)|θρ (6)

By calculating (4) on each region defined on the template
and image subwindow by the described partitioning scheme
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Figure 1. Partitioning scheme of Is and T .

we obtain r different partial bound terms. Then, summing
up these terms yields:

βp,r(x, y, n)|N1 =
r−1∑

t=1

[
βp(x, y)|t·n(t−1)·n+1

]
+βp(x, y)|N(r−1)·n+1

(7)
Instead, by calculating (5) on each region and summing up
we get:

δp(x, y) =
r−1∑

t=1

[
δp(x, y)|t·n(t−1)·n+1

]
+ δp(x, y)|N(r−1)·n+1 (8)

Thus, the βp,r(x, y, n)|N1 function represents a lower bound
of the δp(x, y) function.

The bounding property of function βp,r(x, y, n)|N1 can
be deployed within a template matching process in order
to prune rapidly unsatisfactory matching positions. In par-
ticular, a sufficient condition for pruning the current image
position is given by:

βp,r(x, y, n)|N1 > δm (9)

where δm is the minimum of the distance function found so
far. In fact, if inequality (9) holds, the current image posi-
tion cannot improve the degree of similarity to the template
with respect to the current best matching position; thus, the
current image position can be pruned without computing the
actual distance function δp(x, y).

In case (9) is not verified, the algorithm determines
a more efficient sufficient condition characterized by a

Proceedings of the IEEE International Conference
on Video and Signal Based Surveillance (AVSS'06)
0-7695-2688-8/06 $20.00  © 2006

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 13, 2010 at 06:50 from IEEE Xplore.  Restrictions apply. 



bounding function closer to the actual value of the δp(x, y)
function. This is done by computing the partial distance
term associated with the first region and then using it to re-
place the corresponding partial bound term in βp,r(x, y):

γp,(r−1)(x, y, n) = δp(x, y)|n1 + βp,(r−1)(x, y, n)|Nn+1

(10)

As a result, the new sufficient condition that can be checked
in order to prune the current position is given by:

γp,(r−1)(x, y, n) > δm (11)

The better efficiency of condition (11) is guaranteed by the
following inequalities:

δp(x, y) ≥ γp,(r−1)(x, y, n) ≥ βp,r(x, y, n)|N1 (12)

that can be easily inferred from the properties of partial
bound and partial distance terms.

Should (11) be not verified either, the algorithm would
continue checking other sufficient conditions characterized
by increasing efficiency by substituting, at generic step i,
the i − th partial bound term with its corresponding partial
distance term. Proceeding this way, the algorithm can deter-
mine and check up to r sufficient conditions. The last lower
bounding function that can be determined is:

γp,1(x, y, n) = δp(x, y)
∣∣(r−1)·n
1

+ βp,1(x, y, n)
∣∣N
(r−1)·n+1

(13)

and the associated sufficient condition:

γp,1(x, y, n) > δm (14)

Should (14) be not verified, the algorithm would complete
the computation of the distance function by calculating the
partial distance term associated with the last region and then
compare δp(x, y) to δm.

3. Considerations

The proposed technique has been described here for typ-
ical template matching scenarios, where the best match to-
gether with its score has to be found within an image. Nev-
ertheless, it is worth noting that the application to other
fields where a threshold δt is fixed previously to the match-
ing process in order to select matching candidates, such as
image filtering [4], is straightforward. In fact this can be
easily done by initializing δm as δt and then storing into an

array all the positions (x, y) that, not being skipped by any
of the sufficient conditions applied, verify:

δp(x, y) < δm (15)

To briefly compare our technique with other proposals, it
is worth noting that [3] uses sufficient conditions based on
the triangular inequality at different levels of resolution. It
does not incorporate partial distance terms into the bound-
ing functions, this implying that when no sufficient condi-
tion is verified the overall distance function has to be calcu-
lated from scratch. Algorithms [6] and [9] use βp(x, y) as
a way to determine a sufficient condition for pruning non-
matching positions. Since with p = 1, 2 holds the following
inequality (see Appendix A):

βp(x, y) ≤ βp,r(x, y, n)|N1 (16)

the lower bounds proposed in this paper represent a closer
approximation of the δp(x, y) term. Moreover, it is worth
noting that the partial bound terms, which are the basic
terms of our bounding functions, can be efficiently com-
puted thanks to standard incremental techniques such as
box-filtering [7]. Generally speaking, the number of distinct
box-filters required by the algorithm is equal to the num-
ber of different sized regions used within the partitioning
scheme. As discussed in Section 2, with only two differ-
ent sized regions only two distinct box-filters are required
by the algorithm, thus reducing the computational overhead
as well as the memory footprint. When the template and
image subwindow can be partitioned into regions having all
the same size (n = N

r ), the computational efficiency in-
creases furtherly since only one box-filter is needed. It is
worth pointing out that any different partitioning scheme
which subdivides the image window and the template into
equally sized blocks could be applied, and would lead to the
same cost in terms of incremental calculations. Obviously,
increasing the number of subsets improves the tightness of
the bounding function though requires a higher number of
operations for its calculation. Hence, this turns out to be a
trade-off for the choice of the granularity of the partitioning
scheme.

The proposed algorithm, as it is the case of [3], [2], [4],
[5], [6] and [9], is data dependent. Since the number of
pruned positions can not be foreseen, the amount of com-
putation required by our algorithm cannot be estimated in
advance. In particular, the execution time depends signifi-
cantly on the position of the best matching image subwin-
dow within the search area as well as on a proper choice
of the two parameters (r, n) associated with the partition-
ing scheme. In order to alleviate these dependencies, we
have developed two methods aimed at estimating respec-
tively the position of the best matching image subwindow
and the optimal choice of parameters (r, n). These methods,
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not described here for the sake of brevity, require a negligi-
ble computational cost and hence can be used at run-time to
provide initialization values to our template matching algo-
rithm.

Table 1. Speed-ups yielded by our algorithm
vs. FS algorithm, SSD case.

Dataset (r, n
N ) Speed− up Ptot[%] P0[%]

paint1 (20,0.05) 108.7 ≈ 100.0 91.3
paint2 (16,0.06) 136.7 ≈ 100.0 96.9
paint3 (8,0.12) 207.5 ≈ 100.0 99.2
pcb3 (4,0.21) 56.6 ≈ 100.0 99.4
plants (11,0.08) 99.5 ≈ 100.0 97.0

Ringo 1 (34,0.03) 25.2 ≈ 100.0 80.4
Ringo 2 (34,0.03) 28.0 ≈ 100.0 81.1
Board 1 (34,0.03) 16.4 ≈ 100.0 53.6
Board 2 (34,0.03) 15.6 ≈ 100.0 30.4
Board 3 (14,0.06) 78.7 ≈ 100.0 95.4
Wafer 1 (12,0.09) 73.5 ≈ 100.0 95.3
Wafer 2 (11,0.08) 107.5 ≈ 100.0 96.2
Wafer 3 (25,0.04) 23.1 ≈ 100.0 53.5

4. Experimental results

In this section we provide experimental results aimed
at comparing our algorithm to the FS algorithm based on
SAD/SSD and to an FFT-based algorithm. All the com-
pared algorithms were implemented in C and run on a Linux
workstation based on a P4 3.056 GHz processor. Our algo-
rithm includes the run-time method for the estimation of
the position of the best matching subwindow and uses as
parameters the pair (r, n) yielding the maximum speed-up.
The datasets used for the experiments consist of grayscale
images and templates of various dimensions and are shown
in Figg. 2 - 7.

Table 1 shows the speed-ups (i.e. ratios of measured ex-
ecution times) obtained by our algorithm with respect to the
FS SSD-based algorithm, while Table 2 shows the speed-
ups in the case of the SAD function. Both tables show in the
second column the values of parameters (r, n) yielding the
maximum speed-up, which is reported in column 3. Finally,
columns 4 and 5 show the percentage of positions that were
pruned thanks to the application of, respectively, all the suf-
ficient conditions and only the first sufficient condition (i.e.
inequality (9)).

As it can be noted from the two tables, the proposed al-
gorithm yields significant speed-ups with respect to the FS
algorithm throughout the whole dataset. In the SSD case the
speed-up ranges from 15.6 (Board 2) up to 207.5 (paint3),

Figure 2. Datasets paint 1, 2 and 3.

Figure 3. Dataset plants.

Figure 4. Dataset pcb3.
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Figure 5. Datasets ringo 1 and 2.

Figure 6. Datasets Board 1, 2 and 3.

Figure 7. Datasets Wafer 1, 2 and 3.

Table 2. Speed-ups yielded by our algorithm
vs. FS algorithm, SAD case.

Dataset (r, n
N ) Speed − up Ptot[%] P0[%]

paint1 (10,0.11) 242.2 ≈ 100.00 99.30
paint2 (11,0.09) 206.7 ≈ 100.00 99.32
paint3 (7,0.13) 277.0 ≈ 100.00 99.82
pcb3 (4,0.22) 73.7 99.99 99.48
plants (3,0.22) 167.2 ≈ 100.00 99.90

Ringo 1 (13,0.08) 44.9 99.98 94.12
Ringo 2 (13,0.08) 68.6 ≈ 100.00 95.85
Board 1 (25,0.04) 15.1 ≈100.00 74.77
Board 2 (34,0.03) 21.2 ≈ 100.00 79.95
Board 3 (7,0.10) 115.9 ≈ 100.00 98.71
Wafer 1 (8,0.13) 104.3 ≈ 100.00 98.57
Wafer 2 (9,0.09) 139.8 ≈ 100.00 99.20
Wafer 3 (16,0.06) 112.5 ≈ 100.00 97.20

while it varies between 15.1 (Board 1) and 277.0 (paint3)
in the SAD case.

Finally, we have compared our algorithm to a template
matching algorithm based on the SSD function and the
FFT. FFT methods are widely used for SSD-based template
matching since the SSD function can be written as:

δ2(x, y) = ||Is(x, y)||22 + ||T ||22 − 2 · Is(x, y) ◦ T (17)

with ◦ representing the dot product operation. Thus, FFT-
based methods compute the dot product term in the fre-
quency domain in order to reduce the overall calculations.
In our experiments we have used an efficient algorithm
named cvMatchTemplate, which belongs to the OpenCV
computer vision library, developed by Intel. Table 3 shows
the speed-ups yielded by our algorithm with respect to
the cvMatchTemplate algorithm for SSD-based template
matching. It is worth observing that our algorithm can yield
notable speed-ups with regards to the FFT-based algorithm:
in the worst case the performance of the two algorithms is
the same (speed-up equal to 1.0, Board 2), while in the best
case the speed-up reaches 12.1 (Paint3).

5. Conclusion and future work

A novel method aimed at performing fast and exhaus-
tive template matching based on the Lp norm has been de-
scribed throughout the paper. The method relies on a parti-
tioning scheme applied to both the template and the image
subwindow, as well as on the combined use of the trian-
gular inequality together with partial evaluations of the Lp

norm. This approach permits to determine several lower
bounding functions, each one representing a closer approx-
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Table 3. Speed-up yielded by our algorithm
vs. FFT-based algorithm, SSD case

Dataset (W, H) (M, N) Speed− up
paint1 (1152, 864) (164, 161) 2.8
paint2 (1152, 864) (128, 152) 7.2
paint3 (1152, 864) (118, 162) 2.1
pcb3 (384, 288) (72, 73) 7.4
plants (512, 400) (104, 121) 9.0

Ringo 1 (640, 480) (126, 144) 2.1
Ringo 2 (640, 480) (118, 162) 2.2
Board 1 (640, 480) (63, 179) 1.3
Board 2 (640, 480) (106, 138) 1.0
Board 3 (640, 480) (65, 149) 5.5
Wafer 1 (640, 480) (119, 84) 7.1
Wafer 2 (640, 480) (109, 123) 6.8
Wafer 3 (640, 480) (189, 98) 1.2

imation of the distance measure used in the template match-
ing process. It has been shown that the computation of
the bounding functions is particularly efficient and requires
low memory usage. The experimental results show notable
speed-ups when comparing the proposed algorithm to the
FS algorithm, as well as to an efficient implementation of
the FFT-based template matching approach.

Our future work will include the extension of the concept
at the basis of the proposed method to the Block Matching
field for motion estimation. Moreover, we plan to compare
our method with the recent approach based on the Walsh-
Hadamard transform proposed in [4].

A Proof of inequality (16)

For the sake of brevity we consider here only the case
p = 2. Suppose to partition vectors Is(x, y), T into two
sub-vectors respectively of rows [1, ρ] and [ρ+1, N ] (hence,
r = 2). We define:

I1 =
M∑

i=1

ρ∑

j=1

I(x + i, y + j)2 (18)

I2 =
M∑

i=1

N∑

j=ρ+1

I(x + i, y + j)2 (19)

T1 =
M∑

i=1

ρ∑

j=1

T (i, j)2 (20)

T2 =
M∑

i=1

N∑

j=ρ+1

T (i, j)2 (21)

hence:

β2(x, y) = (
√

I1 + I2 −
√

T1 + T2)2 (22)

β2,2(x, y, ρ)|N1 = (
√

I1 −
√

T1)2 + (
√

I2 −
√

T2)2 (23)

Let’s assume that:

β2(x, y) > β2,2(x, y, ρ)|N1 (24)

By using (22) and (23) and by algebraically manipulating
(24) we get to:

√
(I1 + I2) · (T1 + T2) <

√
I1 · T1 +

√
I2 · T2 (25)

Then, by squaring (25) and by means of simple manipula-
tions we arrive at:

I2 · T1 + I1 · T2 − 2 ·
√

I2 · T1 · I1 · T2 = (26)

(
√

I1 · T2 −
√

I2 · T1)2 < 0

which is an absurd result. Hence:

β2(x, y) ≤ β2,2(x, y, ρ)|N1 (27)

The proof in general case of r partitions can be obtained
straightforwardly by successive applications of (27).
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