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Abstract—The literature on local invariant 3D features is
growing, also fostered by the advent of cheap off-the-shelf 3D
sensors. Although several recent proposals in the field include
both a detector and a descriptor, some of the most successful
and used descriptors do not define a companion detector.
Moreover, as vouched by the related field of image features,
detectors and descriptors defined within the same proposal
do not necessarily yield the highest performance when used
together. Hence, in this work we investigate on the effectiveness
of the many possible combinations between state-of-the-art 3D
detectors and descriptors, so as to identify optimal pairs as
well as highlight well-matched detectors for those descriptors
lacking a companion feature detection algorithm.

Keywords-3D detector; 3D descriptor; performance evalua-
tion

I. INTRODUCTION

Local invariant image features are key to many successful

computer vision applications, such as automatic registra-

tion, object detection with clutter and occlusions, image

categorization, object category detection. The computation

of local invariant features relies on two stages, referred

to as detection and description. Detection deals with the

extraction of repeatable keypoints from images. Description

projects the neighborhood of a keypoint into a proper feature

space. Typical local features are covariant with rotation and

scale, and robust to small affine or perspective distortions.

Some of the most successful proposals define both stages,

e.g. DoG and SIFT [1], FastHessian and SURF [2]. However,

the problems of detection and description can be solved

orthogonally, so that several proposals [3]–[5] as well as

prominent evaluation work [6], [7] address only one of the

two stages. As a result of such orthogonality, researchers

have been deploying hybrid combinations, such as the recent

ORB features [8] which rely on modified versions of inde-

pendently introduced detection (FAST [4]) and description

(BRIEF [5]) algorithms. Finally, as vouched by studies

on image features [9], [10], the optimal combinations of

detectors and descriptors are not necessarily those proposed

together by the authors, so that it is relevant to evaluate their

possible combinations to single out the best performing ones.
The related field of local features for 3D data has not

reached yet a comparable level of maturity, although ap-

plications based on 3D local features are emerging: retrieval

[11], object detection [12]–[14], shape registration [15], [16],

shape categorization [17], [18]. Moreover, research efforts

in this field are significantly fostered by the availability

of affordable 3D sensors, above all the Microsoft Kinect.

Recent papers on 3D features define both a detector and a

descriptor [13], [15], [19]–[21]. Yet, some widely adopted

proposals focus on the description stage only [16], [22], [23]

and either describe all [22] or a random subset of points [16],

[23].

Grounded on similar motivations as in [9], [10], in this

paper we investigate on the effectiveness of the possible

combinations between existing 3D feature detection and

description algorithms. We carry out this study with the

aim of identifying the best 3D detector/descriptor pairs in

three diverse and important application scenarios, namely

shape registration, object recognition and shape retrieval.

Our contribution is three-fold: we single out effective 3D

detector/descriptor pairs for each scenario by exhaustively

exploring the Cartesian product between two sets comprising

state-of-the-art proposals for each of the two stages; we

highlight detectors suitable to be deployed together with

widespread proposals addressing the description stage only;

we assess the performance level currently achieved by state-

of-the-art 3D features and highlight the related open issues.

To the best of our knowledge, this paper is the first attempt

to single out the best combinations between 3D detectors and

descriptors. In fact, the proposed evaluations of 3D detectors

[24]–[26] and 3D descriptors [26], [27] focus on the two

stages separately, likewise the well known evaluation work

concerning local invariant image features [6], [7].

II. 3D DETECTORS

This section briefly reviews the state-of-the-art methods

for 3D keypoint detection considered in our investigation. 3D

detectors can be divided into two categories, namely fixed-
scale and adaptive-scale detectors. The key step common to

both categories is the selection of keypoints as local extrema

of a saliency measure.

Fixed-scale detectors find distinctive keypoints at a spe-

cific, constant scale which is provided as a parameter to

the algorithm. Local Surface Patches (LSP), introduced in

[12], defines the saliency of a vertex according to its Shape

Index, which in turn is based on the maximum and minimum

curvatures at the vertex. Extrema are considered keypoints

if their Shape Index is significantly greater or smaller than

the mean Shape Index within the given support.

Intrinsic Shape Signatures (ISS) were introduced in [20].

ISS saliency measure is based on the EigenValue Decompo-
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sition (EVD) of the scatter matrix of the points belonging

to the support of a vertex. Only vertexes whose ratio

between two successive eigenvalues is below a threshold are

considered. Among these vertexes, the saliency is given by

the magnitude of the smallest eigenvalue, so as to consider

as keypoints only those vertexes exhibiting a large variation

along every principal direction.

Likewise in [24], the 3D detector presented in [13] is

referred to here as KeyPoint Quality (KPQ). Analogously

to ISS, saliency is based on the scatter matrix. Pruning of

non-distinctive vertexes, though, is achieved by thresholding

the ratio between the maximum lengths along the first two

principal axes, which is computed after alignment of the

support to the canonical reference frame given by principal

directions. As for saliency, it is determined by means of

an empirical combination of curvatures within the support

of the vertex. To limit the sensitivity of the estimation to

noise and sampling density, curvatures are computed over a

smoothed and re-sampled surface fitted to the aligned data

by means of a surface fitting algorithm [28].

The common structure of adaptive-scale detectors starts

building a scale-space defined on the surface, thus extending

to the case of 3D data the well-known concept defined

for images. Successively, a characteristic scale is associated

to each vertex, which is selected as the maximum of the

saliency along the scale dimension.

The proposal in [29], hereinafter recalled as Laplace-

Beltrami Scale-Space (LBSS) as done in [24], builds the

scale-space by computing an invariant defined as the expo-

nential dumping of an operator, which can be interpreted as

the displacement of a point along its normal by a quantity

proportional to the mean curvature. Hence, for simple shapes

such as perfect spheres or planes, the saliency measure

employed by LBSS is proportional to the mean curvature.

MeshDoG [21] constructs the scale-space by applying

different normalized Gaussian derivatives through the DoG

operator, which is a well-known approximations of the

normalized Laplacian [1]. The operator is not computed

directly on the geometry of the mesh, but either on the

mean curvature, the Gaussian curvature or the photometric

appearance of a vertex.

In addition to the fixed-scale detector, in [13] an adaptive-

scale method is also proposed, which will be referred to as

KPQ-AS. The scale-space is built by increasing the size of

the support over which the pruning term used by KPQ, i.e.
the ratio between the maximum lengths along the first two

principal axes, is computed. Then, automatic scale selection

for each keypoint is carried out.

III. 3D DESCRIPTORS

This section briefly reviews the 3D descriptors included

in our investigation. We use the same taxonomy of 3D

descriptors as in [16]. It divides 3D descriptors into two

main categories, namely Signatures and Histograms.

As far as Signatures are concerned, in our investigation we

include Point Signatures [30] and the descriptor proposed in

the same paper as the KPQ detector [13]. In Point Signatures
(PS), the signature is given by the signed height of the

3D curve obtained by intersecting a sphere centered at the

keypoint with the surface. In [13] (KPQ), the signature is

given by the third coordinate of each vertex of the support

expressed in the local RF, after the same surface fitting

and resamplig [28] step as in the detection phase has been

performed.

As for Histogram-based methods, Spin Images [22], com-

putes 2D histograms of points falling within a cylindrical

volume by means of a plane that ”spins” around the normal.

3D Shape Context [23] modifies the basic idea of Spin

Images by accumulating 3D histograms of points within a

sphere centered at the feature point. The canonical reference

frame defined by 3D Shape Context is not unique, as one of

its axis is chosen randomly. This results in the need to create

multiple description for each keypoint during the matching

stage, which affects both the effectiveness as well as the

memory and computation costs of the matching process. To

overcome these limitations, in [31] Unique Shape Context

(USC) is proposed, which deploys the same description

approach as in [23] but relies on a unique and repeatable

canonical reference frame.

Two recent descriptors try to leverage on the benefits

of both Signatures and Histograms. Both descriptors en-

code spatially localized histograms. Although not explicitly

grounded on the adopted taxonomy, the MeshHoG descriptor

[21] can be interpreted as a hybrid descriptor which uses

histograms of curvatures. The SHOT descriptor [16], instead,

was proposed in the paper that introduced the taxonomy and

relies on histograms of normal orientations.

IV. EVALUATION METHODOLOGY

This section presents the datasets as well as the method-

ology and metrics used in each of the three application

scenarios addressed by our evaluation.

A. Datasets

For registration experiments we used Armadillo, Dragon
and Bunny from the Stanford 3D Scanner Repository1, Am-
phora, Buste, Dancing Children, Fish, Glock and Neptune
from the Aim@Shape dataset2 and sets of views of four

objects acquired by means of a Kinect sensor (Frog, Squirrel,
Duck and Mario). The ground truth for the first two sets

is available together with the data, while we estimated the

ground truth for the Kinect views by manually producing

a coarse registration and then automatically refining it by

means of Scanalyze3. Fig. 1 depicts sample views from the

datasets.

1http://graphics.stanford.edu/data/3Dscanrep
2http://www.aimatshape.net/resources
3http://graphics.stanford.edu/software/scanalyze/
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Figure 1. Registration datasets: sample views from Neptune and Duck.

Figure 2. Left: one scene (top) and some model views (bottom) from
Virtual Stanford. Right: three sample queries from PSB (top row) and some
correct results from the ground truth in the corresponding columns.

We run object recognition experiments on a synthetic

dataset, Virtual Stanford, that was created to reproduce

typical data acquired with modern 3D sensors, such as the

Microsoft Kinect, but with ground truth information known

by construction. To this purpose, we implemented a Kinect

simulator which first generates depth-maps of 640x480

pixels from a specific vantage points by ray casting, then

adds Gaussian noise and quantizes z-coordinates, with both

the noise variance and the quantization step increasing with

distance [32]. Finally, we apply bilateral filtering to the depth

maps to smooth out noise and quantization artifacts. The

original models from the Stanford 3D Scanner Repository

were placed randomly in groups of 3, 4 or 5 to create 50

different scenes. For each scene, 6 different views were

acquired by the Kinect simulator. A set of 20 2.5D views

for each model constitutes the model library, i.e. we focus

on 2.5D versus 2.5D object recognition. Fig. 2 reports one

exemplar scene and views from four models.

As for shape retrieval, we rely on the Princeton Shape
Benchmark dataset [33]. It contains 1814 models, split into

a train set and a test set. We used the coarse1 classification

level, wherein categories are directly related to shape, such

as ”bed”, ”humans”, ”seat”, ”gun”, etc... (see Fig. 2).

B. Application-oriented Approach

When evaluating detectors, descriptors as well as their

combinations, two approaches can be envisaged: focusing on

the performance of the feature algorithm regardless of the

performance of the addressed application or, alternatively,

on the performance of the overall application, indirectly

assessing through it the actual performance of the detector

and/or descriptor.

The first approach is perhaps more general, as it is

unaffected by the choice of the additional stages that need

to be plugged in together with detection and description in

order to build up the complete pipeline. As pointed out in

[34], the correct way to compare descriptors in descriptor

matching experiments relies on Precision-Recall curves, as

the total number of negatives is not well-defined in such

experiments. Yet, Precision–Recall curves do not allow to

summarize performance into a uniquely defined figure of

merit4, as it is the case e.g. of the Area Under the Curve

(AUC) for ROC curves. However, such a kind of compact

performance indicator is definitely required to manage and

interpret the outcome of extensive experiments like those

presented in this paper.

An important issue when comparing detectors/descriptors

is the absolute number of keypoints and, hence, matches.

In practice, a saturation effect occurs when using features

in real applications: above a certain number of matches the

performance of the application is insensitive to their actual

number, whereas below another threshold the application

simply fails, regardless of the relative number of good

matches out of the total number of features. Precision–Recall

or ROC curves do not capture this important aspect, as they

normalize true positives and false positives with respect to

absolute values of positives and negatives. To overcome this

limitation, one might think to plot just true positives vs. false

positives, but it is again hard to define a meaningful indicator

to summarize performance, due to such curves spanning

different regions depending on the number of keypoints

extracted by the detector.

On the other hand, to focus on the performance of the

overall application offers a clear and direct snapshot of

the performance of a detector/descriptor pair in a specific

context. Moreover, such an approach allows well defined

and meaningful performance indexes to be derived straight-

forwardly. However, as already pointed out, the application-

oriented approach requires the definition of a complete

algorithm chain, which must be suited to all the considered

detector/descriptor pairs (e.g. it must be neutral with respect

to descriptors defining or not a local reference frame). To

deal with this issue, as well as to emphasize the impact

of detector/descriptor pairs on performance, we opted for

three very simple, baseline application pipelines addressing

registration, object recognition and shape retrieval. These are

described below together with the associated performance

4For example, the definition of the average precision used in the Pascal
VOC Challenge has been changed during the editions and in all versions
it requires to modify the curve in order to make precision monotonically
decreasing
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indexes.

1) Registration: To register two 3D views of a model,

indicated here as v1 and v2, we first establish correspon-

dences by matching descriptors with their nearest neighbor.

Given correspondences, we apply RANSAC together with a

classical absolute orientation algorithm and then refine the

alignment by Generalized ICP [35]. The inlier tolerance for

RANSAC and the maximum matching threshold for GICP

were tuned on a randomly selected subset of views. The

resulting values were 8 ∗ mr for RANSAC and 10 ∗ mr
for GICP, where mr stands for mesh resolution, i.e. the

average edge length of the meshes. Given the estimated

rotation and translation aligning v1 to v2, denoted as H12

in homogeneous coordinates, the Root Mean Squared Error

(RMSE) for the pair is computed as follows:

RMSEv1,v2 =

√√√√ 1

Nv1

Nv1∑
i=1

(H12p̃i −HGT
12 p̃i)2 (1)

where Nv1
is the number of vertexes in v1, p̃i are the 3D

homogeneous coordinates of the i-th vertex of v1 and HGT
12

is the ground truth transformation between v1 and v2.

The registration is considered successful if the RMSE

between the views is below a threshold (ε = 5 ∗mr). Given

all the pairs of a model, its registration rate is defined as

rreg =
#registered pairs

#registrable pairs
, (2)

where a pair is considered registrable if, when aligned by

using ground truth transformation, the area overlap between

the views is larger than 10% of their area. Finally, the

registration rate over the whole registration dataset is given

by the mean registration rate over all the models.

2) Object recognition: To carry out object recognition in

scenes with clutter and occlusions, we complement feature

extraction and description with a baseline correspondence
grouping (CG) stage [12], aimed at grouping correspon-

dences into geometrically consistent subsets, each one hold-

ing consensus for the presence of a specific model instance

in the current scene under the assumption of rigid model-

to-scene transformations.

Specifically, given a scene s and one view v of the model

m, CG subdivides correspondences into subsets where, for

every two pairs of matching keypoints {ksl , kvn}, {ksp, kvq},
the following spatial relationship is satisfied:

∣∣||kvn − kvq ||2 − ||ksl − ksp||2
∣∣ < ε (3)

with ε being a parameter of this method, intuitively repre-

senting the consensus set bandwidth. Starting from strongest

correspondences, the subdivision into subsets proceeds it-

eratively, until no more correspondences can be added or

subsets can be merged. If a subset cardinality is above a

consensus size threshold the model is considered present in

the scene. Given the correspondences, its pose can also be

estimated.

Hence, given a scene s and the set of views {mi,j}Nj=1 of

the model mi, we first establish correspondences associated

with each view by matching descriptors according to the

ratio of distances criterion [1], so as to limit the influence

of clutter. Given these correspondences, we select as best

view that yielding more matches,

mi,best = argmax
mi,j

#matches(mi,j , s) . (4)

We then run CG between the best view mi,best and the scene

s in order to decide upon model presence/absence. Given the

established presence/absence for each model and the ground

truth, we can define true positives and false positives as

well as positives and negatives. By varying the consensus

size threshold for CG, we can plot the corresponding ROC

curve and estimate the AUC, which is used as performance

index in these experiments. The ratio threshold for descriptor

matching and the consensus set bandwidth for CG were

tuned on a random subset of the dataset. The resulting

values were 0.85 for the ratio threshold and 10 ∗ mr for

the consensus set bandwidth.

3) Shape retrieval: For object retrieval, we first normalize

each model and query to align it with its principal directions

and fit it in the unit cube centered in the origin, as the PSB

dataset presents a large size variability. We also normalize

the point density of the dataset by resampling each model

to the same number of vertexes (4000), as done for example

in [36]. Given a query q and a set of models {mi}Ni=1,

we establish a set of correspondences by matching each

descriptor of q with its 1-NN in each model mi. Let

dk(q,mi) be the distance of the k-th descriptor of q from

its nearest neighbor in mi. We rank models in the retrieval

list according to the mean distance of their descriptors from

q, i.e.

mi � mj ⇔ 1

M

M∑
k=1

dk(q,mi) ≤ 1

M

M∑
k=1

dk(q,mj) , (5)

where M is the number of descriptors extracted from the

query. Given the ranked list of models, we use the second

tier [33] as performance index of retrieval experiments. This

index is computed as the ratio between the number of correct

retrieval result in the first 2C positions of the list and C,

where C is the number of models belonging to the query

category in the testing set.

C. Parameters

All parameters of detectors and descriptors have been

fixed for the experiments on all datasets. Default parameters

proposed by the authors in the original publications have

been used. For MeshDoG we use the mean curvature as

quality measure, for we found that it yields better results

than the Gaussian curvature.
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Following the methodology proposed in [24],

adaptive-scale detectors and fixed-scale detectors

have been run on approximately the same set of

scales. Detectors were tuned to inspect the set

Σ = {8mr, 14mr, 20mr, 26mr, 32mr, 38mr}: this

allows detectors to look for discriminative and repeatable

structures ranging from point-wise scales to local and object

sub-part scales. As scale-invariant detectors define different

spacing between adjacent scales, they could only be tuned

to approximately inspect the same scales. Moreover, the

first and last scale are used only to assess the presence

of a local extremum in the immediately subsequent or

antecedent scale by KPQ-SI and LBSS. Therefore for

KPQ-SI, which uses uniform spacing for the scale space,

i.e. σk = σk−1 + Δσ, we set σ0 = 2mr, Δσ = 6mr
and the number of scales Ns = 8; for LBSS, which

uses exponential spacing, i.e. σk = σk−1 ∗ Δσ, we set

σ0 = 3.75mr, Δσ = 1.6 and Ns = 7; for MeshDoG, which

uses octaves and scales like SIFT, i.e.

σk =

√√√√(k mod Os + 1)2k/Os +Os

k/Os∑
i=0

2i σ0 (6)

we set σ0 = 6mr, the number of octaves per scales Os = 6
and Ns = 3.

To report the mean result for a combination of a descriptor

and a fixed-scale detector we consider in each experiment

the radius that yields the best performance.

V. EXPERIMENTAL RESULTS

We provide results through tables showing for each de-

tector/descriptor pair the mean performance index on the

datasets.

A. Registration

As for registration, overall the performance are quite

low, i.e. the best method can align on average 30% of

the registrable view pairs. When interpreting this results,

however, it is important to remind that we defined as

registrable those pairs whose overlap is at least 10% of their

area. This threshold was chosen to highlight whether some

combinations were particularly suited to register difficult

view pairs ( i.e. exhibiting a small overlap), though, in

general, global registration of all views can be accomplished

even without registering such difficult cases, provided a

sufficient number of views is available.

The best performance is provided by the pair ISS/PS

(Table I). ISS turns out the best performer among detectors,

as nearly all descriptors yield their -substantially- highest

registration rate when used in conjunction with such detec-

tor. The second best detector is KPQ-AS, despite scatter

matrix-based detectors (e.g. KPQ, KPQ-AS and ISS alike)

being not invariant nor robust to the local modifications of

the mesh due to self occlusions and vantage point variations.

Nevertheless, such detectors outperform those relying on

point-wise curvature estimations, e.g. MeshDoG and LSP.

We ascribe this counterintuitive result to the inherent inferior

robustness to noise of the latter. LBSS consistently provides

the lowest registration rates: this can be ascribed to the small

amount of keypoints highlighted by its saliency [24], which

is not sufficient to correctly align most of the views.

Except when ISS is used, given the same detector there

are not such clear differences between descriptors. As a

result, all the descriptors are well matched in this experiment

with ISS. Only MeshHoG performs better when used in

conjunction with its own detector, MeshDoG.

B. Object Recognition

Results on the Virtual Stanford dataset are reported in

table II.

The best combination is ISS/USC, closely followed by

ISS/SHOT. ISS turns out again the best performer among

detectors: all descriptors yield the highest AUC when used

in conjunction with such detector. The detector is robust

to the distortions of the detailed shapes of the Stanford

models created by the Kinect simulator, its saliency still

capturing more repeatable and distinctive structures than

other detectors. We were unable to test KPQ-AS as it

requires more than an hour to process one of the 300 scenes

in the dataset.

The best descriptors are SHOT, USC, PS, and KPQ. It is

interesting to note that there is a wide gap in performance

between USC and 3DSC when using ISS and KPQ, i.e. when

the detector is well-matched to USC because it grounds

the saliency on the scatter matrix, which is the same entity

used by USC to compute its unique local reference frame.

Likewise SHOT, which deploys the same local RF as USC,

shows more affinity with ISS than with other detectors.

Finally, the deployment of descriptors with the detector

originally introduced in the same proposal does not result

in best performance, e.g. ISS/KPQ is better than KPQ/KPQ

and ISS/MeshHoG is better than MeshDoG/MeshHoG.

C. Retrieval

Results on the Princeton Shape Benchmark dataset are

reported in table III. The best combinations are ISS/SHOT,

KPQ-AS/SHOT, LSP/SHOT and MeshDoG/SHOT. The re-

trieval experiment requires robustness to intra-class varia-

tions rather than noise and vantage point variations, the

latter pair of nuisances being absent in the data. In fact,

point-wise curvatures detectors (LSP and MeshDoG) turn

out as effective as or even better than those based on

the scatter matrix. With these working conditions, point-

wise curvatures allow to highlight small, distinctive details

which are likely to co-occur within the class. On the other

hand, KPQ performs poorly when compared with the other

experiments: the use of a larger support than point-wise

curvatures combined with surface smoothing and resampling

428



Table I
MEAN REGISTRATION RATES ON KINECT, STANFORD, AND AIM@SHAPE DATASETS.

Det.
Desc.

3DSC KPQ MeshHoG PS SHOT SI USC

ISS 0.3 0.3 0.19 0.32 0.28 0.29 0.23

KPQ 0.12 0.18 0.13 0.25 0.15 0.13 0.1

LSP 0.12 0.17 0.09 0.17 0.15 0.11 0.08

KPQ-AS 0.24 0.21 0.2 0.18 0.19 0.26 0.19

LBSS 0 0.01 0.04 0.03 0.02 0.01 0.01

MeshDoG 0.15 0.17 0.23 0.18 0.16 0.14 0.1

Table II
MEAN AUCS ON VIRTUAL STANFORD DATASET.

Det.
Desc.

3DSC KPQ MeshHoG PS SHOT SI USC

ISS 0.54 0.59 0.55 0.64 0.74 0.61 0.76

KPQ 0.51 0.55 0.55 0.55 0.54 0.56 0.53

LSP 0.51 0.58 0.54 0.58 0.6 0.54 0.56

KPQ-AS - - - - - - -

LBSS 0.5 0.5 0.5 0.5 0.5 0.5 0.5

MeshDoG 0.48 0.47 0.52 0.47 0.47 0.46 0.49

in absence of noise hinders retrieving the same structures in

presence of local modifications due to intra-class variations.

The best descriptor is by far SHOT, which obtains the best

second tier with every detector. An interesting comparison

can be performed between SHOT and USC, as they are

describing the same keypoints and deploy the same local

RF. The notable difference in performance is to be ascribed

to two factors: USC, being a pure histogram of points, has to

use a fine tessellation of the local neighborhood to achieve

distinctiveness, which turns out inherently less robust to

intra-class variations than the coarse subdivision used by

SHOT; SHOT accumulates first order differential entities in

its histograms, which tolerate higher intra-class variations

compared to the raw data used by USC. KPQ is a signature

of smoothed and resampled points: a signature of raw data is

unlikely to be effective in presence of intra-class variations;

the surface smoothing and resampling is indeed detrimental

as the data do not present noise. It was not possible to use

3DSC in this experiment, as it is the largest descriptor (1980

entries) and the set of descriptors extracted from the training

set and used at test time to rank the database models does

not fit into the memory limit of 32-bits systems.

VI. RUNNING TIME

Table IV shows the mean running time required by the

detection, description and matching stages in the registra-

tion of a view pair. The reported times are aggregated by

averaging the registration times across all the view pairs of

a model and then over all the models of the registration

dataset.

The fastest pair is LSP/SI, closely followed by

LSP/MeshHoG, LSP/PS and ISS/SI. The detector plays the

most important role in determining the overall efficiency

of a pair. When deploying KPQ-AS and LBSS it takes on

average about 20 minutes to register a pair of views of

a model, regardless of the descriptor. Even with KPQ the

overall running time is dominated by the detection time,

but the registration time for a pair drops to about 1 minute

and a half. Only with faster detectors we can appreciate

the difference between the evaluated pairs. The majority of

combinations obeys the rule that using faster detector or

descriptor results in shorter running time, without exhibiting

particular affinity between considered methods.

VII. FINAL CONSIDERATIONS

Overall, the best pairs identified by the proposed eval-

uation turn out ISS/PS and ISS/SHOT. The former is the

best for registration and the third-best for object recognition;

the latter is close to the best pair for registration, is the

second-best for object recognition and the best for retrieval.

Both pairs also exhibit short running time. Other effective

combinations are ISS/USC, which is the best for object

recognition, and ISS/3DSC and ISS/KPQ, which are the

second-best for registrations. Some methods turned out too

demanding though: 3DSC memory requirements do not

allow its deployment with large databases, such as those
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Table III
MEAN SECOND TIERS ON PRINCETON SHAPE BENCHMARK DATASET.

Det.
Desc.

3DSC KPQ MeshHoG PS SHOT SI USC

ISS - 0.11 0.17 0.22 0.31 0.22 0.22

KPQ - 0.09 0.17 0.18 0.24 0.2 0.15

LSP - 0.12 0.19 0.19 0.29 0.24 0.18

KPQ-AS - 0.06 0.2 0.21 0.3 0.25 0.25

LBSS - 0.08 0.07 0.1 0.13 0.1 0.12

MeshDoG - 0.06 0.2 0.17 0.27 0.22 0.15

Table IV
MEAN RUNNING TIME IN SECONDS ON KINECT, STANFORD, AND AIM@SHAPE DATASETS.

Det.
Desc.

3DSC KPQ MeshHoG PS SHOT SI USC

ISS 4.25 7 3.83 2.31 3.47 1.79 5.08

KPQ 85.3 91.14 84.34 84.22 84.22 83.67 89.29

LSP 3.56 7.61 1.7 1.72 3.14 1.19 3.38

KPQ-AS 1186.91 1233.37 1181.69 1176.85 1176.52 1176.24 1185.91

LBSS 1123.49 1123.64 1126.53 1123.44 1123.48 1123.48 1123.49

MeshDoG 6.87 32.05 7.68 3.89 2.94 2.82 5.67

typically used in shape retrieval scenarios; KPQ-AS compu-

tation time does not scale well with the number of vertices in

the mesh, and therefore it cannot be used on detailed scenes

such as those of our object recognition experiment.

As the above summary clearly indicates, the detector

referred to as ISS is the most effective. Therefore, it turns out

a reasonable choice to try in place of random sampling for

those descriptors lacking a companion detection stage. Alter-

natives are KPQ-AS for registration, which is well matched

with both SI and 3DSC, and KPQ-AS and MeshDoG for

retrieval, which provide better performance than ISS with

both SI and MeshHoG. Overall, current state-of-the-art 3D

features seem effective when dealing with non-Kinect data,

i.e. the CAD models of the PSB dataset and the laser scanner

views used for registration. On the other hand, Kinect data,

as those used in our object recognition scenario, set forth

significant challenges for the evaluated feature algorithms.

This is, indeed, one major open issue to be addressed by

future research on local 3D features.

As for future work, we plan to extend our evaluation, by

including recent relevant detectors such as, in particular, the

HKS [19] detector and the proposals in [37] and in [38]. As

for descriptors, we plan to include the local extension of the

well-known Spherical Harmonics global descriptor [39] and

HKS-SI [40].
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“Recognizing objects in range data using regional point
descriptors,” in ECCV, vol. 3, 2004, pp. 224–237.

[24] F. Tombari, S. Salti, and L. Di Stefano, “Performance evalu-
ation of 3D keypoint detectors,” IJCV, pp. 1–23, 2012.

[25] T.-H. Yu, O. Woodford, and R. Cipolla, “An evaluation of
volumetric interest points,” in 3DIMPVT, may 2011, pp. 282
–289.

[26] A. M. Bronstein, M. M. Bronstein, and et. al., “Shrec
2010: robust feature detection and description benchmark,”
in 3DOR, 2010.

[27] P. Heider, A. Pierre-Pierre, R. Li, and C. Grimm, “Local shape
descriptors, a survey and evaluation,” in 3DOR, 2011, pp. 49–
56.

[28] J. D’Errico, “Surface fitting using gridfit,” MATLAB Central
File Exchange, July 2010.

[29] R. Unnikrishnan and M. Hebert, “Multi-scale interest regions
from unorganized point clouds,” in CVPR-WS: S3D, 2008.

[30] C. S. Chua and R. Jarvis, “Point signatures: A new represen-
tation for 3D object recognition,” IJCV, vol. 25, no. 1, pp.
63–85, 1997.

[31] F. Tombari, S. Salti, and L. Di Stefano, “Unique shape context
for 3D data description,” in 3DOR. New York, NY, USA:
ACM, 2010, pp. 57–62.

[32] J. Smisek, M. Jancosek, and T. Pajdla, “3D with kinect,” in
ICCV-WS, nov. 2011, pp. 1154 –1160.

[33] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The
princeton shape benchmark,” in Shape Modeling Interna-
tional, Jun. 2004.

[34] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive
representation for local image descriptors,” in CVPR. IEEE
Computer Society, 2004, pp. 506–513.

[35] A. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in
Proceedings of Robotics: Science and Systems, Seattle, USA,
June 2009.

[36] Y. Liu, H. Zha, and H. Qin, “Shape Topics: A compact repre-
sentation and new algorithms for 3D partial shape retrieval,”
in CVPR, 2006.

[37] H. Fadaifard and G. Wolberg, “Multiscale 3D feature extrac-
tion and matching,” in 3DIMPVT, may 2011, pp. 228 –235.

[38] I. Sipiran and B. Bustos, “Harris 3D: a robust extension of
the Harris operator for interest,” Int. J. Vis. Comput., vol. 27,
pp. 963–976, 2011.

[39] P. Shilane and T. Funkhouser, “Selecting distinctive 3D shape
descriptors for similarity retrieval,” in Proc. Shape Modeling
International, 2006.

[40] M. Bronstein and I. Kokkinos, “Scale-invariant heat kernel
signatures for non-rigid shape recognition,” in Proc. Int. Conf.
Computer Vision and Pattern Recognition (CVPR), 2010.

431


