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Abstract— This work aims at automatic detection of man-
made pole-like structures in scans of urban environments
acquired by a 3D sensor mounted on top a moving vehicle.
Pole-like structures, such as e.g. roadsigns and streetlights, are
widespread in these environments, and their reliable detection
is relevant to applications dealing with autonomous navigation,
facility damage detection, city planning and maintenance. Yet,
due to the characteristic thin shape, detection of man-made
pole-like structures is significantly prone to both noise as well
as occlusions and clutter, the latter being pervasive nuisances
when scanning urban environments. Our approach is based
on a “local” stage, whereby local features are classified and
clustered together, followed by a “global” stage aimed at further
classification of candidate entities. The proposed pipeline turns
out effective in experiments on a standard publicly available
dataset as well as on a challenging dataset acquired during the
project for validation purposes.

I. INTRODUCTION AND RELATED WORK

Advanced technologies for automatic processing of 3D
urban data are increasingly demanded by the market due
to the recent widespread of 3D sensors that can be easily
mounted on top of a roaming vehicle. Indeed, in the past
few years these sensors, such as the Velodyne, have become
more and more affordable, and allow acquiring dense and
accurate 360◦ scans of the environment surrounding the
vehicle at high frame rates (e.g. 100 Hz). They are usually
paired with a Inertial Measurement Unit (IMU) and a GPS
system so to automatically associate each scan with vehicle
trajectory coordinates and geo-locate each acquired 3D point.
Typical applications exploiting these sensing modalities deal
with road and facility management, so as to detect damages
and faults on roads, road facilities and buildings, as well as
autonomous driving.

One of the most common and relevant class of objects
that can be found in 3D urban scans is represented by
man-made pole-like structures (roadsigns, streetlights, util-
ity poles, traffic lights, . . . ). Indeed, reliable detection of
these structures is mandatory for both the aforementioned
applications: in particular, roadsigns and traffic lights for au-
tonomous driving, all pole-like structures for facility damage
detection and road maintenance. Yet, manual annotation is
cumbersome and time wasting due to both the huge amount
of data typically acquired by roaming vehicles (of the order
of thousands of points per square meter, which typically
implies tens of millions of 3D points per each kilometer
of trajectory) as well as the challenging objects that need
to be localized, often represented by thin and significantly
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Fig. 1: Detection of relevant pole-like structures in urban
environments acquired by a 3D laser scanner mounted on a
roaming vehicle is a challenging task. The orange bounding
boxes denote the structures detected automatically by our
algorithm.

occluded structures. Fig. 1 shows two examples of a typical
scenario of the kind, with the 3D orange bounding boxes
highlighting the fully automatic detections provided by the
method proposed in this paper. As it can be observed, the
automatic detection task is very hard due to the presence
of vegetation often surrounding pole-like structures, the
extremely thin shape of the sought objects and the similar
shape of tree trunks.

The above considerations motivate research and devel-
opment of techniques for automatic detection of pole-like
structures in 3D data. Early work on the subject [1] relies on
a set of heuristics on range data so to extract possible pole-
like structures. Upon certain conditions (poles higher than the
road level), successive manual annotation is required. Other
approaches regard the joint use of 3D data and intensity
images. In [2], a multi-sensor setup is deployed to improve
automatic recognition of road facilities such as road signs,
traffic marks and road fences. In particular, the authors
present a method exploiting an inertial system, an odometer
and two GPS receivers to accurately align the intensity data
acquired from two sets of stereo cameras and the range data
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Fig. 2: Proposed pipeline for automatic pole detection within 3D data.

acquired from three laser scanners, all mounted on-board a
vehicle. Extraction of pole-like structures such as road signs
can then be improved by cross-checking road sign detection
in 2D data with pole detection in 3D data. The work in
[3] proposes to detect street lamps via analysis of 2D data
only, i.e. based on images acquired by 6 partially overlapping
cameras installed on-board a vehicle. First, detection of
vertical structures is carried out by SVM classification of a
feature vector relying on image edges. Next, pole hypotheses
are cast in the 2D space represented by the road plane
by exploiting the knowledge of extrinsic parameters of the
cameras: local maxima within this space identify possible
poles seen by different cameras. The lack of 3D data, though,
yields spatially imprecise localization (e.g. with an accuracy
of about 3 meters).

More recent work focused on analysis of 3D data usually
deploys principal directions computed from the scatter matrix
of a set of points to derive the “poleness” of a 3D region. The
work in [4] aims at detection of pole-like structures (includ-
ing tree trunks) based on the analysis of laser scanner data.
First, a 1-NN segmentation of laser scanlines is performed
to yield spatially compact 1D clusters along scanlines. Then,
similar 1D clusters on adjacent scanlines are merged itera-
tively. Non-adjacent clusters are then merged by evaluating
the distance from the vertical principal direction of each
cluster. Finally, clusters are classified as poles by checking
five heuristic conditions relying on fixed thresholds. [5]
proposes a pole extraction and classification algorithm based
on k-Nearest Neighbor (kNN) segmentation and evaluation
of the principal directions of each segmented cluster. The
use of an initial blind segmentation step seems to hinder
performance notably, as the reported classification accuracy
is 97.4% for pole segments and 63.9% for all segments.
In [6], an algorithm for extraction of pole-like structures
from Lidar data is proposed. Unlike [5], principal directions
are determined from the covariance matrix computed on a
neighborhood of each point. Eigenvalues are then thresholded
to label each point as either belonging to a pole or not.
Region growing is applied to cluster the point cloud into
pole hypotheses, and the pole radius is estimated via fitting
a cylinder to each cluster. Reported classification accuracies
on 2 datasets proposed by the authors are 33% and 91%.
The approach described in [7] projects the 3D point cloud
data into 2D elevation images called digital elevation models.
The 2D images are then elaborated with standard image
processing tools (e.g. morphological operators, watershed
transform, . . . ) in order to segment the objects above the
ground level. The objects are then classified using a Sup-
port Vector Machine. The segmentation recall rates for the
“pole-like” categories (“lamppost”, “light pole” and “traffic

light”) are respectively 82%, 77% and 81%. The successive
classification step reports a 88% precision and 85% recall
for the “pole-like” object category as a whole.

In this paper, we present a novel method for pole-like
structure detection in 3D data. One main novel contribution
of our work concerns the deployment of specifically devised
3D descriptors to be computed at both point level (local de-
scriptors) as well as cluster level (global descriptors), which
hold the potential to rely on more discriminative cues than,
e.g., principal directions. The method consists in a pipeline
of several stages. First, 3D data are processed at point level,
with the goal of clustering 3D points together when they
form meaningful pole-like structure: this has the advantage
of providing a more meaningful clustering of 3D points with
respect to, e.g., [5]. Then, further processing occurs at cluster
level, so to discard wrong pole-like segments which would
otherwise lead to false positives. We show experimental
results on a publicly available urban data benchmark dataset,
as well as on our own dataset acquired via a laser scanner
mounted on top a moving vehicle.

II. A 3D PIPELINE FOR AUTOMATIC POLE DETECTION

As anticipated in Section I, the proposed 3D pole ex-
traction approach deploys a pipeline encompassing several
stages, as sketched in Fig. 2. The pipeline input is a 3D
point cloud acquired by a 3D sensor such as a range laser
scanner. Moreover, we estimate a normal vector at each 3D
point as the Eigen vector associated to the smallest Eigen
value of the covariance matrix, approximated by computing
the scatter matrix from all the neighbors at a given distance.
Instead of generating an optimal radius for each point as
proposed in [8], we got fairly good results by simply fixing
it at a reasonable value.

During the initial pre-processing step, planar structures are
detected and removed by means of a RANSAC-like iterative
algorithm. At this stage, not only the main road plane is
removed, but also other planar surfaces, such as building
façades and ground regions, so as to both reduce the size
of the cloud to be processed for the sake of computational
efficiency as well as get rid soon of many regions which
are guaranteed not to correspond to the sought pole-like
structures

Next, on each point not discarded by the initial plane-
removal step, a local feature specifically designed to high-
light the poleness of a point’s neighborhood is computed
and then classified by means of a Support Vector Machine
(SVM). Following local classification, a semantic clustering
relying on a Markov Random Field (MRF) formulation
over the connected point cloud graph is carried out [9]. By
exploiting both point connectivity as well as the continuous
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Fig. 3: Road pavement detection and removal (red points).
The point clouds come from the Oakland 3-D Point Cloud
Dataset (left) and our urban dataset (right); for details see
Sec. III.

(a) (b)

Fig. 4: Non-horizontal (green) and road planes (red) extrac-
tion in two point clouds from the Oakland 3-D Point Cloud
Dataset (see Sec. III); notice how parked vehicles, which are
distractors as far as pole detection is concerned, are removed
as non-horizontal planes.

output of the classifier, this step subdivides the cloud into
clusters, each labeled as either being a “pole” or not.

Although MRF-based clustering would already provide the
required type of output, we have devised a more elaborate
approach whereby additional features are extracted at cluster
level (i.e., one for each cluster) and then classified. This
additional step turns out effective in improving significantly
the classification accuracy of the whole system by reducing
the number of both false positives and missed poles. Each
stage is described in detail in the remainder of this Section.

A. Preprocessing: plane removal

Planes are detected and removed by a RANSAC-based
plane model fitting. However, though the upward direction
is already provided by the IMU, more often than not the main
road plane cannot be represented by a single plane model due
to road discontinuities, noise and slope variations. Indeed, the
road is usually made-out of at least two planes (i.e. one for
each lane). Therefore, we detect the planes associated with
the road by iterative plane extraction:

1) find the current dominant plane (as described soon
later);

2) if the number of extracted points is below a threshold
⇒ exit;

3) if the absolute value of the scalar product between
the plane normal and the upward direction is above
a threshold ⇒ the plane is labeled as road;

4) remove the points belonging to the found plane from
the cloud and repeat.

R R r 

z 

r 

|cosa| |cosa| 0 1 0 1 

Fig. 5: The proposed local feature for pole detection entails
a distinctive shape in presence of pole-like objects.

Instead of using the standard RANSAC algorithm, which
would require at least 3 points for plane fitting [10], we
propose to find the dominant plane by means of a 1-point
RANSAC plane fitting. For any randomly sampled point p
with normal np, first we consider the plane np ·(x− p) = 0.
Then, a point q with normal nq is assigned to the consensus
set if the absolute value of the scalar product between np

and nq is above a threshold and the distance from the plane
projected along nq is below a given value. The plane model
with the largest consensus is kept as the dominant plane.
Thus, while the standard approach may be confused by ran-
domly aligned points, our estimation of the RANSAC plane
model from point normals is robust and reliable, as a normal
vector implicitly refers to a plane which locally fits a point’s
neighborhood. The employed RANSAC algorithm does not
guarantee compactness of the found planes, therefore an
Euclidean clustering algorithm is run on the points labeled
as road and, accordingly, clusters which turn out too small
are discarded.

In our approach, we apply the same algorithm to detect
and remove non-horizontal planes, such as those belonging
to façades and walls. In this case, of course, at algorithm
step 3 the absolute value of the scalar product between the
plane normal and the upward direction must turn out below
a threshold. Some results concerning the plane removal
algorithm are shown in Fig. 3 and 4.

B. Local feature extraction and classification

In this stage we rely on a novel feature descriptor specif-
ically designed to highlight pole-like structures, which is
computed densely on the points not classified as planes by
the preprocessing phase. As illustrated in Fig. 5, given one
such point p, first we collect all its neighbors falling between
two spheres of radii r and R centered at p, with r < R (the
light blue region in Fig. 5); then, for each valid neighbor
q, we accumulate the absolute value of the scalar product
between (p− q) and the known upward direction into a
histogram of N bins. Accordingly, points belonging to pole-
like structures are expected to exhibit a distinctive histogram
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Fig. 6: The MRF-based semantic clustering stage improves the point-wise SVM classification by determining 3D clusters
with an associated semantic label. Top: clustered connected components (shown with pseudo-colors); Bottom: assigned
semantic labels (green: “pole”, violet: “not-pole”).

with a few high-count bins toward the right end, unlike other
“non-pole” regions (see Fig. 5).

Given a sufficient number of examples labeled as “pole” or
“not-pole”, we train a SVM classifier to distinguish between
the two categories. However, the point-wise classification
provided by the SVM often leads to a noisy output with
spurious labels within a group of correctly classified points.
Therefore, instead of looking for a hard classification thresh-
old, we use the classifier to obtain a score related to the prob-
ability of a point to either belonging to a pole or not, leaving
the final decision to the successive semantic clustering step,
which combines the local independent observations provided
by the SVM together with spatial regularization constraints.

C. MRF-based semantic clustering

The previous stage associates to each 3D point a contin-
uous value denoting how well the point’s neighborhood can
be assimilated to a pole-like structure. This information is
exploited at this stage with the goal of carrying out semantic
clustering, i.e. subdividing the point cloud into clusters of
points, each labeled either as “pole” or “not-pole”. This is

useful not only to improve the classification accuracy by
spatially enforcing smoothness in the labeling process, but
also to apply a successive segment-wise classification, as
explained in Section II-D.

Purposely, we have employed the MRF formulation pro-
posed in [9]. Accordingly, a connected graph is built on top
the point cloud by associating each point to its k nearest
neighbors (k = 4 has been used in our experiments). Then,
the following energy functional defined over the graph is
minimized:

E(X) =
∑
i

φi(xi) +
∑
i

φi,j(xi, xj) (1)

where xi is the label assigned to node i and j is one
of its neighbors according to the connectivity established
by the graph. This functional can be interpreted as the
energy associated with a graph configuration, X , and is
composed of two terms; the unary term, φi(xi), aims at
maximizing the coherence with the observations provided by
the SVM classifier, the pairwise term, φi,j(xi, xj), enforces
label consistency between neighboring points.
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Fig. 7: Point-wise classification on the CMU-Oakland
dataset: proposed “poleness” feature (P) vs. Spin Images (SI).
For both methods, the 3 best parameter choices are reported
in the chart.

As in [9], an approximated solution, X̃ , is obtained via
Loopy Belief Propagation [11]. Given X̃ , a simple connected
component algorithm applied over the 3D graph can segment
the data into 3D clusters with associated semantic labels. In
particular, in our implementation we have used an iterative
breadth-first search algorithm (BFS) [12]. Fig. 6 provides an
example of the output from the semantic clustering stage of
our pipeline, showing both unlabeled connected components
(top) as well as clusters semantically labeled as either “pole”
or “not-pole” (bottom).

D. Global feature extraction and classification

Although the algorithm described so far is able to detect
reliably most pole-like structures, it generally yields a high
number of false positives. Specifically, tall and thin struc-
tures, such as tree trunks and parts of buildings or walls
not completely discarded by the plane removal step, may
be returned as pole candidates. In order to prune away as
many false positives as possible, we enforce an additional
stage aimed at classifying entities at cluster rather than point
level.

In particular, each cluster yielded by the previous MRF-
based stage is described via a global feature and classified by
means of a SVM classifier. To this purpose, a proper cluster
descriptor has to be employed. After a careful evaluation, we
have selected the well known Spin Images descriptor[13],
and devised an adaptation to cluster representation which
enables a more distinctive description of pole-like structures.
In particular, at each cluster we compute a Spin Image using,
as center, the geometric centroid of the cluster itself and, as
the radius defining the extension of the description support,
the maximum Euclidean distance between the centroid and
all points belonging to the cluster, this allowing all cluster
points to be included into the description. The Spin Images
algorithm deploys the normal of the point for which the

descriptor is being computed as the Rotation Axis around
which a 2D plane spins to accumulate all points into a
histogram. To get improved robustness to noise, we propose
to use a different Rotation Axis: first we compute the
covariance matrix of the coordinates of the points belonging
to the cluster point, then use as Rotation Axis the eigen-
vector corresponding to the largest eigenvalue. To define a
repeatable sign for the eigenvector, we always choose the
direction that points “upwards” wrt. the road ground plane,
thus exploiting the presence of the Global Reference Frame
of the point cloud. The use of a Rotation Axis defined on
the cluster as a whole establishes a reference direction more
robustly than the standard Spin Images approach, as local
computation of the normal may turn out fragile in case of
thin objects and noisy measurements.

The feature just described is not sufficient to accurately
reject all false positive instances: in a few cases tree trunks
are incorrectly classified as poles, due to their shape, indeed,
closely resembling a man-made pole. Clearly, the semantic
difference between a pole and a trunk does not lie in its
vertical section but in the points located in the area just
outside the cluster: typically foliage is present around the
top of a tree trunk whereas a utility pole or road sign
does not include such characteristic trait. For this reason,
we propose to associate to each cluster a description of
its context too, which is obtained by means of a second
Spin Image descriptor computed using the same centroid,
support radius and rotation axis as before. However, as for
this second Spin Image capturing the context of a cluster,
the description relies not just on the points belonging to the
cluster, but instead also on the original input point cloud,
so as to include contributions from nearby structures (road
plane, façades, foliage. . . ).

The final context-aware global descriptor used for the
SVM classification at cluster level is obtained by concatena-
tion of the two Spin Images.

III. EXPERIMENTAL RESULTS

Qualitative and quantitative experiments have been con-
ducted to evaluate each of the described stages, as well
as the overall pole detection pipeline. Purposely, we have
used two different datasets, both concerning a urban scenario
acquired by a laser scanner. The first dataset is the public
CMU-Oakland Point Cloud Dataset1 [14], which includes
17 point clouds with point-wise ground-truth labels related
to semantic categories. However, as we aim at pole detection,
the available labels have been turned into the pair “pole”
and “not-pole”. As the “pole” ground-truth catagory includes
both utility poles and tree trunks, to evaluate the proposed
approach at cluster level (Sec. III-B) we have generated
additional ground-truth information by drawing into the point
clouds 3D bounding boxes around clusters and manually
tagging each as either “pole” or “not-pole”.

The second dataset, hereinafter referred to as City, com-
prises two rather long sequences that we have acquired by

1available at http://www.cs.cmu.edu/˜vmr/datasets/
oakland_3d/cvpr09/doc/
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TABLE I: Improvement in point-wise classification due
to the MRF-based clustering stage on the CMU-Oakland
dataset

TP FP Precision Recall
before-MRF 3427 29995 0.103 0.958
after-MRF 3444 27928 0.110 0.963

an off-the-shelf system based on a laser scanner mounted
on a moving vehicle. The acquisition device is engineered
so as to align automatically the 3D data based on GPS and
IMU measurements, thus providing huge point clouds that
we then cut and process in smaller chunks for the sake
of computational feasibility. As described for the CMU-
Oakland dataset, we have generated cluster-level ground-
truth also for City by manually tagging pole-like structures.

A. Local classification and clustering

We have evaluated the proposed local feature highlighting
the “poleness” of a neighbourhood by comparing it to
the well-known Spin Image descriptor [13] on the CMU-
Oakland dataset 2. We tuned the parameters of both features
via cross-validation, in particular by varying the internal
(r) and external (R) radius and number of bins for our
proposal, the image width W and cylinder radius b for
Spin Images[13]. Between the available clouds, 12 were
chosen for training and cross-validation, while the remaining
5 were employed for testing. The results plotted in Fig.
7 show clearly the superior performance delivered by our
proposal with respect to Spin Images on a wide range of
classification thresholds, the latter turning out too imprecise -
unless one accepts very low sensitivity - due to the difficulty
of estimating reliably the normal direction over thin pole-
like structures. Indeed, we found the scatter matrix computed
at points lying on these objects to provide quite often two
small and similar eigenvalues, which results in ambiguous
estimation of the normal direction.

In addition to providing the successive global classification
stage with meaningful pole candidates, we would expect
MRF-based semantic clustering to be able to correct some
of the errors yielded by the point-wise SVM classification
relying on the “poleness” feature. Accordingly, in Table I
we compare the number of TPs and FPs before and after
the MRF-based semantic clustering stage. More precisely,
using the same test set as for the evaluation of point-wise
classification and considering the probability score provided
by the SVM classifier, we compare the points for which
Pr (“pole”) > Pr (“not-pole”) (before-MRF classification) to
those labeled as “pole” by the MRF-based step (after-MRF
classification). As shown in the Table, on a total of 3577
“pole” points we got a sensible reduction of false positives
together with a slight increase of the number of true positives.
At the same time, and as previously explained, the MRF-
based stage guarantees homogeneously connected labels, as
required for the successive global classification stage.

2Point-wise ground-truth is not available for the City dataset

Finally, as already pointed out, an example of the data
inputted to the final global classification stage is depicted in
Fig. 6. We wish to point out that, although the MRF stage
is able to reliably eliminate many false positive points as
witnessed by Table I, to retain the majority of true poles
present in the scene the number of false positive clusters
is still high: in particular, the number of TP/FP clusters
is, respectively, 32/256 for the CMU-Oakland dataset and
84/859 for the City dataset. This motivates the use of a
successive global classification stage, which is evaluated in
the next subsection.

B. Global classification

To evaluate the performance of the proposed global clas-
sification stage we used both the previously mentioned
datasets, i.e. CMU-Oakland and City. The latter has been
split into two parts, one used for evaluation of the global
classifier and the other to assess the performance of the
pipeline as a whole (see Subsection III-C). Specifically, in
each of the two datasets 70% of the clusters were randomly
selected to become the training set, the remaining 30% used
for testing. We used SVM with a Radial Basis Function
kernel and ran a 10-fold cross validation process to find the
optimal C and γ parameters.

The classification performance was evaluated using three
different cluster descriptors: a standard Spin Image (with pa-
rameter W = 8), a Spin Image based on the different choice
of the reference direction (Section II-D) and a context–
aware Spin Image (see again Section II-D). Unlike the two
variants described in Section II-D, the standard SI descriptor
is computed using as center the cluster point closest to the
centroid and taking the normal at this point as rotation axis,
while, similarly to the variants in Section II-D, the extent of
the description support (i.e. the cylinder radius) is given by
the Euclidean distance from the center to the cluster point
farthest away from the center.

As for the evaluation, in Figure 8 we report the ROC
curves computed by varying the SVM decision threshold
related to binary classification of the candidate clusters
coming from the MRF-stage into either “pole” or “not-
pole”. Both Figure 8a and 8b show that the choice as
reference direction of the eigenvector corresponding to the
largest eigenvalue of a cluster improves significantly the
classification performance with respect to the standard Spin
Image descriptor. Due to the much smaller number of pole-
like structures present in CMU-Oakland, the benefits brought
in by deployment of context information are evident only in
the ROC relative to the City dataset (Figure 8b): here the high
number of trees and other distractors would increase consid-
erably the false positive rate unless the cluster descriptor is
endowed with context information.

C. Overall evaluation

In the previous sections we presented results focused on
evaluating individually each stage of the proposed pipeline.
In this Subsection, instead, we evaluate the entire algorithm
as a whole. To this aim, we use a subset of the City dataset
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(a) CMU-Oakland dataset: the choice of the largest cluster
eigenvector as reference direction improves performance with
respect to standard Spin Images, while the small number of
poles prevents evaluation of the impact of the context–aware
descriptor.
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Fig. 8: Quantitative evaluation of the global classification stage.

(a) Missed poles due to the clutter caused by
vegetation.

(b) A tree is incorrectly classified as a pole. (c) Another false negative due to the small
amount of 3D points captured by the sensor.

Fig. 9: Sample results yielded by the proposed pipeline. The orange bounding boxes are the detections provided by our
algorithm while the blue boxes represent the ground truth.

composed of 385 point clouds that were used neither for
training nor for evaluation of the individual pipeline stages.
Given the manually annotated ground-truth concerning each
pole, the proposed algorithm was applied on the test point
clouds. Successful detections were determined by comparing
each detected bounding box with the closest ground truth
bounding box, in particular we require a minimum overlap
of 70%, carried out by checking the following condition:

Vratio + Voverlap ratio

2
≥ 0.7 (2)

Vratio =
min(Vd, Vgt)

max(Vd, Vgt)

Voverlap ratio =
Voverlap

min(Vd, Vgt)

where Vd is the volume of the detected bounding box, Vgt
the volume of the ground truth bounding box, Voverlap the
volume of the intersection between the two boxes.
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Fig. 10: Overall performance of the proposed algorithm on
the City dataset. The Recall saturates at 94% mainly because
of misdetections due to vegetation hiding poles.
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Fig. 11: Cluttered area with many diverse pole-like structures, such as streetlights and traffic signs, detected correctly and
a few errors.

Fig. 10 shows the Precision-Recall curve yielded by the
overall pipeline on the 385 test point clouds of the City
dataset, where, similarly to Figure 8, the curve spans the
decision threshold of the final global classifier. For example,
a possible operating point of the curve would deliver 75%
recall rate with 80.7% precision; alternatively, should the
application demand higher recall, one might reach 85% recall
with 52.5% precision rate or 89% recall with 39% precision.

Finally, Figures 1, 9 and 11 report some qualitative output
yielded by the proposed pole detection pipeline, which typ-
ically provide only a few false positives and negatives even
in presence of heavy clutter and poles featuring diverse form
factors. Additional qualitative results related to the proposed
pipeline are available in the accompanying video.

IV. CONCLUSIONS

We have proposed an algorithm for automatic detection of
pole-like structures in 3D scans of urban environments. The
overall pipeline builds upon four main stages: removal of
planar surfaces, local classification by a “poleness” descrip-
tor, MRF-based clustering and final context-aware cluster
classification. The proposed approach can detect effectively
pole-like structures within highly cluttered environments,
with the additional ability of discriminating between tree
trunks and poles due to the deployment of contextual infor-
mation. This allows to reach performance levels such as 75%
Recall and 80.7% Precision on a challenging dataset acquired
for validation purposes. The major sources of misdetections
in these kind of data turn out poles heavily occluded by
vegetation or made out of just a few 3D points.
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