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Abstract. We propose a novel interest point detector stemming from
the intuition that image patches which are highly dissimilar over a rel-
atively large extent of their surroundings hold the property of being
repeatable and distinctive. This concept of contextual self-dissimilarity
reverses the key paradigm of recent successful techniques such as the
Local Self-Similarity descriptor and the Non-Local Means filter, which
build upon the presence of similar - rather than dissimilar - patches.
Moreover, our approach extends to contextual information the local self-
dissimilarity notion embedded in established detectors of corner-like in-
terest points, thereby achieving enhanced repeatability, distinctiveness
and localization accuracy.

1 Introduction

The self-similarity of an image patch is a powerful computational tool that has
been deployed in numerous and diverse image processing and analysis tasks. It
can be defined as the set of distances of a patch to those located in its surround-
ings, with distances usually measured through the Sum of Squared Distances
(SSD). Whenever the task mandates looking for large rather than small min-
ima over such distances, we will use the term self-dissimilarity. Analogous to
self-similarity is auto-correlation, which relies on the cross-correlation to com-
pare the given to surrounding patches. An early example of deployment of self-
dissimilarity in the computer vision literature is the Moravec operator [1], which
detects interest points exhibiting a sufficiently large intensity variation along all
directions by computing the minimum SSD between a patch and its 8 adjacent
ones. The Harris Corner Detector [2] extends the Moravec operator by proposing
Taylor’s expansion of the directional intensity variation together with a saliency
score which highlights corner-like interest points. Then, Mikolajczyk and Schmid
developed the Harris-Laplace operator [3] to achieve scale-invariant detection of
corner-like features.

More recently, the self-similarity concept has been used to develop the Local
Self Similarity (LSS) region descriptor [4], which leverages on relative positions
between nearby similar patches to provide invariant representations of a pixel’s
neighborhood. One of the main innovations introduced by this method with re-
spect to previous approaches deploying self-similarities consists in the reference
patch being spatially compared with a much larger neighborhood rather than
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with just its nearest vicinity. The LSS method computes a self-similarity surface
associated with an image point, which is then quantized to build the descriptor.
Notably, the inherent traits of self-similarity endow the descriptor with pecu-
liar robustness with respect to diversity of the image acquisition modality [4,
5]. As a further example, [6] exploits the concept of self-similarity to detect
interest points associated with symmetrical regions in images. Specifically, auto-
correlation based on Normalized Cross-Correlation among image patches is used
as a saliency measure to highlight image regions exhibiting symmetries with re-
spect to either a line (mirror symmetries) or a point (rotational symmetries).
Interest points are successively detected as extrema of the saliency function over
a scale-space. Though aimed at a different purpose such as denoising, the Non-
Local Means (NLM) [7] and BM3D [8] filters exploit the presence of similar
patches within an image to estimate the noiseless intensity of each pixel. In [7],
this is done by computing the weighted average of measured intensities within
a relatively large area surrounding each pixel, with weights proportional to the
self-similarity between the patch centered at the given pixel and those around
the other ones in the area. Instead, in [8] self-similarity allows for sifting-out sets
of image patches grouped together to undergo a more complex computational
process referred to as collaborative filtering.

In this paper we propose a novel interest point detector obtained by reverting
the classical exploitation of self-similarity so as to highlight those image patches
that are most dissimilar from nearby ones within a relatively large surrounding
area. This concept, which will be referred to in the following as contextual self-
dissimilarity (CSD), associates a patch’s saliency with the absence of similar
patches in its surroundings. Accordingly, CSD may be thought of as relying
on the rarity of a patch, which, interestingly, is identified as the basic saliency
cue also in the interest point detector by Kadir and Brady [9]. However, their
work ascertains rarity in a strictly local rather than contextual approach, due to
saliency consisting in the entropy of the gray-level distribution within a patch [9].

A peculiar trait with respect to several prominent feature detectors like [10–
12] is that CSD endows our approach with the ability to withstand significant,
possibly non-linear, tone mappings, such as e.g. due to light changes, as well as to
cope effectively with diversity in the image sensing modality. A similar concept
to CSD has been exploited in [13] for the purpose of detecting salient regions
to create a visual summary of an image. In particular, the proposed saliency
for a patch is directly proportional to the distance in the CIELab space to
surrounding most similar patches and inversely proportional to their 2D spatial
distance, the latter requirement due to the addressed task calling for spatially
close rather than scattered salient pixels. Unlike [13], we aim here at exploiting
self-dissimilarities for the task of interest point detection and propose a saliency
measure which relies solely upon the CSD measured in the intensity domain.

Experiments demonstrate the effectiveness of the proposed detector in find-
ing repeatable interest points. In particular, evaluation on the standard Oxford
dataset as well as on the more recent Robot dataset vouches that our method at-
tains state-of-the-art invariance with respect to illumination changes and remark-
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able performance with most other nuisances, such as blur, viewpoint changes and
compression. Furthermore, we show the peculiar effectiveness of the proposed
approach on a dataset of images acquired by different modalities.

2 Contextual Self Dissimilarity

The saliency concept used by our interest point detector relies on the compu-
tation of a patch’s self-similarity over an extended neighborhood, which has
already been exploited by popular techniques such as the LSS descriptor[4] and
the NLM filter [7]. Unlike these methods though, we do not aim at detecting
highly similar patches within the surroundings of a pixel, but instead at deter-
mining whether a pixel shows similar patches in its surroundings or not. Thus,
the proposed technique relies on a saliency operator, λ, which measures the Con-
textual Self-Dissimilarity (CSD) of a point p, i.e. how much the patch around p
is dissimilar from the most similar one in its surroundings:

λ (p, ρw, ρa) =
1

ρ2w
min

q∈ω(p,ρa),q 6=p
δ
(
ω (p, ρw) , ω (q, ρw)

)
(1)

As shown by (1), the proposed saliency operator is characterized by two
parameters, ρw and ρa, defining respectively the size of the patches under com-
parison and the size of the area from which the patches to be compared are
drawn. In addition, in the same equation, ω(p, ρw) denotes the operator defining
a square image region centered at pixel p and having size equal to ρw pixels,
while δ denotes the distance between the vectors collecting the intensities of two
equally sized image patches, which in its simplest form can be the squared L2

distance, or Sum of Squared Distances (SSD):

δ
(
ω (p, ρw) , ω (q, ρw)

)
=‖ I (ω (p, ρw))− I (ω (q, ρw)) ‖22 (2)

Computing λ at all pixels determines a saliency map whose values are pro-
portional to the rarity of the patch centered at each pixel with respect to the
surrounding area. Normalization by means of the number of pixels involved in
the computation of the self-dissimilarity helps rendering the saliency score in-
dependent of the patch size ρw. Parameter ρa establishes the spatial support of
the saliency criterion. As a well-known trait in literature [14], certain saliency
operators can be defined either locally or globally, depending on a patch’s rarity
being computed over small local neighborhoods or the whole image. By increas-
ing ρa, the λ operator moves gradually from a local toward a contextual or even
global saliency criterion. As mentioned in Sec. 1, we advocate replacing the local
self-dissimilarity underpinning all the popular interest point detectors rooted in
the Moravec operator with a contextual self-dissimilarity notion. To begin sub-
stantiating the claim, in the top-row of Fig. 1, we report results on a subset of
the Oxford dataset that show how deployment of a contextual rather than local
saliency criterion delivers dramatic improvements in terms of repeatability of
the interest points1.

1 Interest point detection is run at multiple scales as described in Sec.3
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Fig. 1: Results on a subset of the Oxford dataset. Top row (a-d): Contextual vs.
Local Self-Dissimilarity. Bottom row: repeatability (e-g) and relative execution
times (h) for CSD interest points detected with different k values.

The saliency defined in (1) relies on estimating the minimum distance be-
tween the given and neighboring patches by simply picking one sample from
observations, which is potentially prone to noise. Indeed, noise on both the cen-
tral as well as the most dissimilar neighboring patch can induce notable varia-
tions in saliency scores, which may hinder repeatability and accurate localization
of salient points. On the other hand, most existing operators grounded on self-
similarity average out estimates over several samples. In the NLM filter, e.g., the
noiseless value to be assigned to each pixel is averaged over all samples. Like-
wise, in the LSS descriptor, the discriminative trait associated to an image point
is the union of the locations of similar patches in the neighborhood. A further
operation which confers robustness to noise to the LSS descriptor is the binning
operation carried out by quantizing into a spatial histogram the locations of
most similar patches.

Therefore, we propose to modify (1) in the way the minimum of the distri-
bution is estimated. Finding the most similar patch among a set of candidates
can be interpreted as a 1-Nearest Neighbor (1-NN) search problem. We propose
to modify the search task to a k-NN problem (with k ≥ 1) and, accordingly, to
estimate the minimum as the average across the k most similar patches:

λ(k) (p, ρw, ρa) =
1

ρ2w · k

k∑
i=1

δ̃i
(
ω (p, ρw) , ω (q, ρw)

)
(3)

where δ̃1, · · · , δ̃k are the k smallest value of the δ function found within the search
area defined by ρa. Parameter k thus trades distinctiveness and computational
efficiency for repeatability and accurate localization in noisy conditions. Fig. 1,
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Fig. 2: Efficient computation of the distance between two patches: recursive
scheme applied along columns (2a) and along both columns and rows (2b).

bottom row, highlights the impact of the chosen k on both performance as well
as computational efficiency: a higher k yields generally improved repeatability
at the expense of a higher computational cost. Although the optimal value may
depend on the specific nuisances related to the addressed scenario, we found
k = 4 to provide generally a good trade-off between performance and speed, and
we thus suggest this as default setting in (3).

2.1 Computational efficiency

Computing the CSD operator over an image with n pixels implies the operation
in (3) to be repeated as many times as n, this yielding a complexity equal to
O(n ·ρ2w ·ρ2a) which may turn out prohibitive for common image sizes. To reduce
the computational burden inherent to the saliency operator presented thus far,
we have devised an incremental scheme which can decrease the complexity to
O(n · ρ2a), i.e. so as to render it independent on patch size.

The main intuition relies on the observation that, once the CSD operator
has been computed at pixel p, most of the calculations associated with the next
position, p′, can be recycled. This is sketched in Fig. 2a, where the patches
associated with p and q are depicted in blue, those associated with p′ and q′

highlighted in red. The figure intuitively shows that the distance between the
patches at p′ and q′ can be computed as:

δ
(
ω (p′, ρw) , ω (q′, ρw)

)
= δ
(
ω (p, ρw) , ω (q, ρw)

)
+

−δ
(
α(p′), α(q′)

)
+ δ
(
β(p′), β(q′)

)
(4)

where α(p′), β(p′), α(q′), β(q′) are the vectors collecting the intensities of the
left and right vertical sides of the two patches, as highlighted in the Figure.
In turn, as illustrated in Fig. 2b, the two distances between the corresponding
sides of the patches appearing in (4) can be computed incrementally from the
position just above p′, denoted as p′′ and highlighted in green, by adding and
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Fig. 3: Qualitative comparison between the interest points provided by MSD
(green dots) and the Harris-Laplace detector [3] (red dots) on 3 image regions
from the Oxford dataset. For clarity of visual comparison, only features of ap-
proximately the same medium-size scale are displayed for both methods.

subtracting properly the squared differences between the intensities at the four
corner positions of the patches, referred to as i, j, u, v. Accordingly, equation (4)
can be further manipulated so to reach:

δ
(
ω (p′, ρw) , ω (q′, ρw)

)
= δ
(
ω (p, ρw) , ω (q, ρw)

)
− δ
(
α(p′′), α(q′′)

)
+

+δ
(
β(p′′), β(q′′)

)
−
(
I (i (p′))− I (i (q′))

)2 − (I (j (p′))− I (j (q′))
)2

+

+
(
I (u (p′))− I (u (q′))

)2
+
(
I (v (p′))− I (v (q′))

)2
(5)

As it can be noticed from the above equation, the distance between the current
pair p′, q′ needs not to be calculated from scratch but can instead be achieved
incrementally from already available quantities by means of a few elementary
operations. This approach, which can be regarded as a particular form of Box
Filtering [15], allows calculating all distances between the central patch and those
contained in the search area with a limited computational complexity and could
be usefully deployed to reduce the complexity of self-similarity-based techniques
too, such as [4, 7].

The overall algorithm to compute the saliency operator λ is showcased in Alg.
1, where for illustrative purposes only we consider the simplest case of equation
(1), i.e. k = 1. In its practical implementation, δα and δβ are assimilated to
the same memory structure having size w · ρ2a elements, which is initialized by
explicitly computing the column-wise squared difference within all search areas
on the first image row. The δω data structure is instead as large as ρ2a elements.
Thus, the overhead in memory footprint required by incremental computation
turns out as small as (w+1)·ρ2a, which is favorably counterbalanced by a speed-up
of about one order of magnitude with respect to the standard implementation.

3 Detection of interest points

Given its definition, the CSD operator yields a high score only when the current
patch is highly dissimilar from all surrounding ones. This trait can be exploited
to develop an interest point detector whereby interest points are given by the
centers of those patches featuring a distinctive structure with respect to their
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Algorithm 1 Incremental computation of the λ operator

for p ∈ first row do
for q ∈ ω(p, ρa),q 6= p do

δα(p, q) = δ
(
α(p), α(q)

)
δβ(p, q) = δ

(
β(p), β(q)

)
end for

end for
for p ∈ all other rows do
δmin = inf
for q ∈ ω(p, ρa),q 6= p do

if p is the first pixel of the row then

δω(q) = δ
(
ω (p, ρw) , ω (q, ρw)

)
else
δα(p, q) += δ

(
u (p) , u (q)

)
− δ

(
i (p) , i (q)

)
δβ(p, q) += δ

(
v (p) , v (q)

)
− δ

(
(j (p) , j (q)

)
δω(q) += δβ(p, q)− δα(p, q)

end if
if δω(q) < δmin then
δmin = δω(q)

end if
end for
λ(p) = 1

ρ2a
· δmin

end for

surroundings, whatever such a structure may be. It is worth observing that, with
the proposed approach, the self-similarity surface around interest points tends
inherently to exhibit a sharp peak rather than a plateau, which is a desirable
property as far as precise localization of extracted features is concerned. Indeed,
given that the patch centered at an interest point must be highly dissimilar
also to adjacent patches, it is unlikely for nearby points to exhibit a similar
saliency as that of the interest point. Another benefit of relying on CSD to
detect interest points concerns its potential effectiveness in presence of strong
photometric distortions as well as multi-modal data, as vouched by the work
related to the LSS descriptor[4]. Moreover, intuition suggest the approach to
be robust to nuisances such as viewpoint variations and blur, given that the
property of a patch to be somehow unique within its surroundings is likely to
hold even though the scene is seen from a (moderately) different vantage point
and under some degree of blur.

However, ρw and ρa would set the scale of the structures of interest firing
the detector. To endow the detector with scale invariance, as well as to associate
a characteristic scale to extracted features, we build a simple image pyramid
I(l) comprising L levels, starting from level 1 (original image resolution) and
rescaling, at each level l, the image of a factor f l with respect to the base level.
Denoting as w and h, respectively, the number of image columns and rows, once
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the scale factor f and the parameters ρa, ρw are chosen, the number of pyramid
levels L can be automatically determined according to:

L =
⌊
logf

( min (w, h)

(ρw + ρa) · 2 + 1

)⌋
(6)

based on the constraint that the top level of the pyramid cannot be smaller than
the area required to compute the saliency on one single point:

min (w, h)

fL
> (ρw + ρa) · 2 + 1 (7)

Once the saliency in (3) is computed at each point within the several layers of
the image pyramid, for each level l the set of interest points, P̃l = {p̃1, · · · , p̃n} ∈
I(l), is extracted by means of a Non-Maxima Suppression (NMS) procedure.
Specifically, an interest point p̃ ∈ I(l) is detected if it yields a saliency higher
than all other saliency values within a window of size ρν :

p̃ ∈ I(l)s.t. max
p∈ω
(
p̃,ρν

)
,p6=p̃

λ(k)
(
p, ρw, ρa

)
< λ(k)

(
p̃, ρw, ρa

)
(8)

As the features detected through the NMS stage are local maxima of the CSD
operator, our proposal will be hereinafter also referred to as Maximal Self-
Dissimilarity interest point detector (MSD). Afterwards, weak local maxima
may be further pruned based on a saliency threshold τδ, which in our experi-
ments is set to τδ = 250.

The search for local maxima throughout the image pyramid allows associating
a characteristic scale to each detected interest point; given an interest point p̃
detected at coordinates (il, jl) and pyramid level l, its associated i, j coordinates
into the original image and characteristic scale size (or diameter) s are given by:

i(p̃) = il · f l j(p̃) = jl · f l s(p̃) = (ρw · 2 + 1) · f l (9)

For the purpose of successive feature description, a canonical orientation may
also be associated to each interest point p̃ by accumulating into a histogram the
angles between the interest point and the centers of the k most similar patches
within ω

(
p̃, ρa

)
weighted by their dissimilarity, so as to then choose the direction

corresponding to the highest bin in the histogram.
As already pointed-out, assessment of saliency based on the self-dissimilarity

of a patch underpins both MSD as well as established detectors of corner-like
structures, such as Moravec [1], Harris [2] and, more recently, the Harris-Laplace
and Harris-affine detectors[3, 16], the key difference consisting in our proposal
advocating assessment to occur across a larger surrounding area referred to as
context rather than locally. It is also worth pointing out that, accordingly, our
approach cannot deploy Taylor expansion of the dissimilarity function, as it is
indeed the case of Harris-style detectors, due to Taylor expansion providing a
correct approximation only locally, i.e. within a small neighborhood of the pixel
under evaluation.
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To further highlight the differences between the two approaches, in Fig. 3 we
compare qualitatively the interest points extracted by MSD to those provided
by the Harris-Laplace (harlap) scale-invariant corner detector [3]. One of the
most noticeable differences between the two approaches concerns harlap tending
to yield multiple nearby responses around the most salient (and corner-like)
structures, while this is not the case of MSD, as nearby corner-like structures
tend to be similar and thus inhibit each other due to the requirement for interest
points to be salient within the context. This is a favorable property as implies
dealing with inherently fewer distinctive interest points in the successive feature
matching stage. It can also be observed how, again due to the use of context,
MSD features tend to be scattered over a more ample image area and in a more
uniform way. Moreover, and unlike harlap, MSD can detect also a variety of
salient structures quite different from corner-like ones, such as blob-like features,
edge fragments and smoothly-textured distinctive patches.

As a final remark, the choice of parameters ρa, ρw is key to the performance of
the proposed detector. In particular, too small a patch does not contain enough
information to render the self-dissimilarity concept meaningful and effective due
to dissimilarity tending to appear quite often small. Alike, this is the case of too
big a patch, with dissimilarity getting now always high. Given the chosen patch
size, as context is enlarged the detector tends to sift-out increasingly distinctive
features, but this hinders both the quantity of extracted interest points, as it
implies a high probability of finding similar structures around, as well as their
repeatability, the latter issue occurring in cluttered scenes due to the likely inclu-
sion into the context of similar patches belonging to nearby objects. Therefore,
we have run several experiments to carefully select the key parameters of our
method and found quite an effective trade-off pair to consist in ρw = 7, ρa = 11.

4 Experimental results

To assess its performance, we compare here the proposed MSD algorithm to the
state of the art in interest point detection. We consider first the standard Oxford
benchmark dataset (4.1), then the more recent Robot dataset (4.2) and finally
an additional dataset made out of image pairs acquired by different modalities
(4.3). As anticipated, in all experiments we have ran MSD with the same set of
parameters, i.e. ρw = 7, ρa = ρν = 11, τδ = 250, f = 1.25.

From the computational point of view, the incremental scheme outlined in
Sec. 2.1 enables a quite efficient implementation even without advanced opti-
mizations or deployment of the parallel multimedia-oriented instructions avail-
able in modern CPUs. Indeed, with the parameter settings used in the experi-
ments, our implementation takes averagely 600ms for image size 640× 480 and
150ms for image size 256× 256 on a Intel i7 processor.

4.1 Evaluation on the Oxford dataset

MSD has been tested on the Oxford dataset, a benchmark for keypoint detec-
tion evaluation introduced in [16]. The dataset includes 8 planar scenes and 5
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Fig. 4: Repeatability on the 8 sets of images of the Oxford dataset. The x axis
denotes the level of difficulty of the considered nuisance.

nuisance factors: scale and rotation changes, viewpoint changes, decreasing il-
lumination, blur and JPEG compression. Performance is measured according
to two indicators: repeatability and quantity of correct correspondences, which
account for, respectively, the relative and the absolute number of repeatable
keypoints detected between the first - reference - image of a scene and each of
the other five - distorted - images. Our proposal has been compared with state-
of-the-art detectors including Difference-of-Gaussian (DoG)[10], Harris-Affine,
Harris-Laplace, Hessian-Affine, Hessian-Laplace [3, 16], MSER [11], FastHessian
[12], and the recently introduced Wade algorithm [17]. All methods were tested
using the binaries provided by the authors of [16], except for FastHessian, for
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Fig. 5: Comparison between MSD and the 4 variants of the proposal in [6] on
the Oxford dataset.

which the original SURF code2 was deployed, and Wade, for which the binaries
provided by the authors3 were used.

Figure 4 reports the performance of the evaluated detectors in terms of re-
peatability on the 8 image sets of the Oxford dataset, with each plot in both
figures related to one image set. By looking at chart 4c we can see that MSD
delivers the highest repeatability with respect to all other detectors in case of
illumination changes. As vouched by charts 4d, 4e, MSD is also quite effective in
withstanding viewpoint variations: it yields overall the best invariance on Wall
and provides the best performance between similarity rather than affine-invariant
detectors on the tougher Graf set. It is also worth pointing out that, on Graf,
MSD features are significantly more repeatable up to 30◦ in-depth rotation than

2 http://www.vision.ee.ethz.ch/ surf/
3 http://vision.deis.unibo.it/ssalti/Wave
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those provided by affine-invariant detectors such as MSER, Hessian-Affine and
Harris-Affine. MSD is also remarkably robust to blur: charts 4g and 4h show that
its repeatability is surpassed only by Wade, while also providing some moderate
advantage at low blur levels on the Trees dataset. These experimental findings
seem to substantiate the conjectured inherent effectiveness of the CSD operator
to highlight patches remaining quite unique within their context under illumi-
nation variations, blur and moderate viewpoint changes. As far as the other
nuisances addressed by the Oxford dataset are concerned, charts 4a, 4b show
that MSD yields overall satisfactory scale invariance, turning out the second-
best method in Boat and performing slightly worse than the best methods in
Bark. Resilience to JPEG compression appears to be good alike, MSD ranking
among the best methods in image set ubc. Considering again the comparison with
established methods whose roots can be traced back to the self-dissimilarity con-
cept, we wish to point out how MSD provides substantially better performance
than the Harris-Laplace detector throughout all the experiments related to the
Oxford dataset. Due to lack of space, we include the results dealing with the
quantity of correct correspondences together with examples of detected features
in the supplementary material. Yet, we wish to highlight here that also in terms
of number of repeatable features MSD provides excellent performance, ranking
among the best methods on this dataset together with Wade and Dog.

In addition to previous results, we have compared our method to the proposal
in [6], which detects interest points driven by the concept of patch self-similarity
(for better clarity, the results are displayed in a distinct figure, i.e. 5). As for this
experiment, MSD is compared on the Oxford dataset to the 4 variants of the
detector tested in [6]: as vouched by the charts, overall our proposal outperforms
neatly all the variants proposed in [6], the margin appearing particularly sub-
stantial when it comes to nuisances such as illumination and view-point changes.

4.2 Evaluation on the Robot dataset

We have also evaluated MSD on the more recently introduced DTU Robot
dataset [18]. This dataset contains 60 scenes of planar and non-planar objects,
from different categories captured along four different paths by means of a robotic
arm. As for this dataset, nuisances are represented mostly by scale and view-
point changes as well as relighting. Due to space constraint, we could not include
results on the whole dataset. Thus, as MSD already showed state-of-the-art per-
formance with respect to illumination changes on the Oxford dataset, we have
focused the evaluation on the scene subsets covering increasing scale variations
(i.e., linear path) and different viewpoint changes (i.e., first arc, second arc and
third arc, these last two also including scale variations since they were acquired
at different distances from the reference image).

Results shown in Figures 6a-6d report the Average Recall Rate (analogous of
the Repeatability) at increasing scale variations (Figure 6a) and different view-
point angles (Figures 6b-6d). To plot these charts, we added the MSD and Wade
curves to those shown in [18] (whose data was kindly provided by their authors).
These results show that MSD keypoints yield outstanding repeatability even
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Fig. 6: Comparison of interest point detectors over the Robot dataset.

building satellite remote square 

Fig. 7: The 4 considered multi-modal image pairs together with the features
detected by MSD on the ”remote” pair (rightmost column).

when tested at high scale differences and notable viewpoint changes, remarkably
outperforming all state-of-the-art methods on each evaluated scene subset. Also,
the higher the scale variation, the higher the gap between MSD and the state of
the art: this can be noticed especially in Figure 6a and by considering that scale
variations increase moving from the first arc through the third arc.

4.3 Evaluation on multi-modal images

Finally, MSD has been compared to the other considered detectors on a dataset
containing 4 image pairs acquired with different modalities, kindly provided by
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Fig. 8: Comparison of interest point detectors over 4 pairs of images related to
different modalities in terms of repeatability and number of correct correspon-
dences.

the authors of [19]. This dataset includes an optical-infrared pair (”square”), a
multi-temporal (day-night) pair (”building”) and two SAR remote sensing pairs
(”satellite” and ”remote”). The dataset is shown in Fig. 7, together with quali-
tative results dealing with the interest points extracted by MSD on image pair
”remote”. Results are reported in terms of both repeatability and quantity (Fig.
8). Repeatability results (left chart) demonstrate that MSD yields remarkable
performance on multi-modal images, so as to turn out, in particular, the best
method in 3 out of the 4 pairs. As such, it provides the highest average re-
peatability. Moreover, MSD provides the largest quantity of repeatable features
in 3 out of the 4 pairs, and just slightly less than the largest in the remaining
pair (right chart). Accordingly, it turns out neatly the best method in terms of
average quantity of repeatable features on the considered multi-modal dataset.

5 Conclusion and future work

The MSD detector is fired by image patches that look very dissimilar from
their surroundings, whatever the structure of such patches may be (e.g. corners,
edges, blobs, textures..). Despite its simplicity, such an approach inherently con-
veys remarkable invariance to nuisances such as illumination changes, viewpoint
variations and blur. Likewise, it enables detection of repeatable features across
multi-modal image pairs, as required, e.g., by remote sensing and medical imag-
ing applications. Peculiarly, the MSD approach generalizes straightforwardly to
detect interest points in any kind of multi-channel images, such as color im-
ages as well as the RGB-D images provided by consumer depth cameras like
the Microsoft Kinect or the Asus Xtion, which are becoming more and more
widespread in computer vision research and applications. Another direction for
future investigation deals with the use of approximate k-NN techniques for dense
patch matching, such as [20], to possibly further ameliorate the efficiency of the
detector. Finally, pairing the MSD detector with an appropriate descriptor is
another topic we plan to investigate next, LSS [4] likely representing a suitable
starting point.
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